Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- H.npy +3 -0
- audio.py +130 -0
- model.joblib +3 -0
H.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5b7bf9ff7240c43f532650b661e94d16f6da2d0be2c6c583a5b6cc0da226b87
|
3 |
+
size 34688
|
audio.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import APIRouter
|
2 |
+
from datetime import datetime
|
3 |
+
from datasets import load_dataset
|
4 |
+
from sklearn.metrics import accuracy_score
|
5 |
+
import random
|
6 |
+
import os
|
7 |
+
import numpy as np
|
8 |
+
import librosa
|
9 |
+
import joblib
|
10 |
+
|
11 |
+
from .utils.evaluation import AudioEvaluationRequest
|
12 |
+
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
13 |
+
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
router = APIRouter()
|
18 |
+
|
19 |
+
DESCRIPTION = "Random Baseline"
|
20 |
+
ROUTE = "/audio"
|
21 |
+
|
22 |
+
def create_spec(dataset, target_sampling_rate=3000):
|
23 |
+
spectograms = []
|
24 |
+
audio_length = int(36000/(12000/target_sampling_rate))
|
25 |
+
for d in dataset:
|
26 |
+
audio_sample = librosa.resample(
|
27 |
+
d["audio"]["array"],
|
28 |
+
orig_sr= d["audio"]["sampling_rate"],
|
29 |
+
target_sr=target_sampling_rate
|
30 |
+
)
|
31 |
+
|
32 |
+
if len(audio_sample) == 0:
|
33 |
+
continue
|
34 |
+
if len(audio_sample) < audio_length:
|
35 |
+
padding_needed = audio_length - len(audio_sample)
|
36 |
+
repeats = (padding_needed // len(audio_sample)) + 1
|
37 |
+
audio_sample = np.concatenate([audio_sample] + [audio_sample[:padding_needed]] * repeats)[:audio_length]
|
38 |
+
elif len(audio_sample) > audio_length:
|
39 |
+
audio_sample = audio_sample[:audio_length]
|
40 |
+
|
41 |
+
rms = np.sqrt(np.mean(np.square(audio_sample)))
|
42 |
+
scalar = 10 ** (-20 / 20) / (rms + 1e-8)
|
43 |
+
|
44 |
+
mel = librosa.feature.melspectrogram(
|
45 |
+
y=audio_sample*scalar,
|
46 |
+
sr=12000,
|
47 |
+
n_fft=2048,
|
48 |
+
hop_length=1024,
|
49 |
+
n_mels=12,
|
50 |
+
power=2.0,
|
51 |
+
)
|
52 |
+
mel_db = librosa.power_to_db(mel, ref=np.max)
|
53 |
+
mel_db_normalized = (mel_db - mel_db.mean()) / (mel_db.std() + 1e-8)
|
54 |
+
spectograms.append(mel_db_normalized.T.flatten())
|
55 |
+
|
56 |
+
return np.stack(spectograms)
|
57 |
+
|
58 |
+
|
59 |
+
@router.post(ROUTE, tags=["Audio Task"],
|
60 |
+
description=DESCRIPTION)
|
61 |
+
async def evaluate_audio(request: AudioEvaluationRequest):
|
62 |
+
"""
|
63 |
+
Evaluate audio classification for rainforest sound detection.
|
64 |
+
|
65 |
+
Current Model: Random Baseline
|
66 |
+
- Makes random predictions from the label space (0-1)
|
67 |
+
- Used as a baseline for comparison
|
68 |
+
"""
|
69 |
+
# Get space info
|
70 |
+
username, space_url = get_space_info()
|
71 |
+
|
72 |
+
# Define the label mapping
|
73 |
+
LABEL_MAPPING = {
|
74 |
+
"chainsaw": 0,
|
75 |
+
"environment": 1
|
76 |
+
}
|
77 |
+
# Load and prepare the dataset
|
78 |
+
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
79 |
+
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
|
80 |
+
|
81 |
+
# Split dataset
|
82 |
+
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
83 |
+
test_dataset = train_test["test"]
|
84 |
+
|
85 |
+
# Start tracking emissions
|
86 |
+
tracker.start()
|
87 |
+
tracker.start_task("inference")
|
88 |
+
|
89 |
+
test_spec = create_spec(test_dataset)
|
90 |
+
H = np.load("H.npy")
|
91 |
+
W_test = np.dot(test_spec, H)
|
92 |
+
model = joblib.load('model.joblib')
|
93 |
+
|
94 |
+
#--------------------------------------------------------------------------------------------
|
95 |
+
# YOUR MODEL INFERENCE CODE HERE
|
96 |
+
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
97 |
+
#--------------------------------------------------------------------------------------------
|
98 |
+
|
99 |
+
# Make random predictions (placeholder for actual model inference)
|
100 |
+
true_labels = test_dataset["label"]
|
101 |
+
predictions = model.predict(W_test)
|
102 |
+
#--------------------------------------------------------------------------------------------
|
103 |
+
# YOUR MODEL INFERENCE STOPS HERE
|
104 |
+
#--------------------------------------------------------------------------------------------
|
105 |
+
|
106 |
+
# Stop tracking emissions
|
107 |
+
emissions_data = tracker.stop_task()
|
108 |
+
|
109 |
+
# Calculate accuracy
|
110 |
+
accuracy = accuracy_score(true_labels, predictions)
|
111 |
+
|
112 |
+
# Prepare results dictionary
|
113 |
+
results = {
|
114 |
+
"username": username,
|
115 |
+
"space_url": space_url,
|
116 |
+
"submission_timestamp": datetime.now().isoformat(),
|
117 |
+
"model_description": DESCRIPTION,
|
118 |
+
"accuracy": float(accuracy),
|
119 |
+
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
120 |
+
"emissions_gco2eq": emissions_data.emissions * 1000,
|
121 |
+
"emissions_data": clean_emissions_data(emissions_data),
|
122 |
+
"api_route": ROUTE,
|
123 |
+
"dataset_config": {
|
124 |
+
"dataset_name": request.dataset_name,
|
125 |
+
"test_size": request.test_size,
|
126 |
+
"test_seed": request.test_seed
|
127 |
+
}
|
128 |
+
}
|
129 |
+
|
130 |
+
return results
|
model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33688213987985901a75886484a540a423d9e0d5967fd4a49a79c74aadb8697a
|
3 |
+
size 1350138
|