LAURENT Valentin commited on
Commit
fb5b7f7
·
1 Parent(s): 91689ed
Files changed (1) hide show
  1. tasks/audio.py +4 -6
tasks/audio.py CHANGED
@@ -20,7 +20,6 @@ DESCRIPTION = "Random Baseline"
20
  ROUTE = "/audio"
21
  def create_spec(dataset):
22
  spectograms = []
23
- y = []
24
 
25
  for d in enumerate(dataset):
26
  audio_sample = d["audio"]["array"] if d["audio"]["sampling_rate"] == 12000 else librosa.resample(
@@ -51,9 +50,8 @@ def create_spec(dataset):
51
  mel_db = librosa.power_to_db(mel, ref=np.max)
52
  mel_db_normalized = (mel_db - mel_db.mean()) / (mel_db.std() + 1e-8)
53
  spectograms.append(np.float16(mel_db_normalized).T.flatten())
54
- y.append(d["label"])
55
 
56
- return np.stack(spectograms),y
57
 
58
 
59
  @router.post(ROUTE, tags=["Audio Task"],
@@ -86,9 +84,9 @@ async def evaluate_audio(request: AudioEvaluationRequest):
86
  tracker.start()
87
  tracker.start_task("inference")
88
 
89
- test_spec, y_test = create_spec(test_dataset)
90
  H = np.load("array_file.npy")
91
- W_val = np.dot(test_spec, H)
92
  model_filename = 'model.joblib'
93
  model = joblib.load(model_filename)
94
  #--------------------------------------------------------------------------------------------
@@ -98,7 +96,7 @@ async def evaluate_audio(request: AudioEvaluationRequest):
98
 
99
  # Make random predictions (placeholder for actual model inference)
100
  true_labels = test_dataset["label"]
101
- predictions = model.predict(W_val)
102
  #--------------------------------------------------------------------------------------------
103
  # YOUR MODEL INFERENCE STOPS HERE
104
  #--------------------------------------------------------------------------------------------
 
20
  ROUTE = "/audio"
21
  def create_spec(dataset):
22
  spectograms = []
 
23
 
24
  for d in enumerate(dataset):
25
  audio_sample = d["audio"]["array"] if d["audio"]["sampling_rate"] == 12000 else librosa.resample(
 
50
  mel_db = librosa.power_to_db(mel, ref=np.max)
51
  mel_db_normalized = (mel_db - mel_db.mean()) / (mel_db.std() + 1e-8)
52
  spectograms.append(np.float16(mel_db_normalized).T.flatten())
 
53
 
54
+ return np.stack(spectograms)
55
 
56
 
57
  @router.post(ROUTE, tags=["Audio Task"],
 
84
  tracker.start()
85
  tracker.start_task("inference")
86
 
87
+ test_spec = create_spec(test_dataset)
88
  H = np.load("array_file.npy")
89
+ W_test = np.dot(test_spec, H)
90
  model_filename = 'model.joblib'
91
  model = joblib.load(model_filename)
92
  #--------------------------------------------------------------------------------------------
 
96
 
97
  # Make random predictions (placeholder for actual model inference)
98
  true_labels = test_dataset["label"]
99
+ predictions = model.predict(W_test)
100
  #--------------------------------------------------------------------------------------------
101
  # YOUR MODEL INFERENCE STOPS HERE
102
  #--------------------------------------------------------------------------------------------