Spaces:
Sleeping
Sleeping
LAURENT Valentin
commited on
Commit
·
fb5b7f7
1
Parent(s):
91689ed
test_2
Browse files- tasks/audio.py +4 -6
tasks/audio.py
CHANGED
@@ -20,7 +20,6 @@ DESCRIPTION = "Random Baseline"
|
|
20 |
ROUTE = "/audio"
|
21 |
def create_spec(dataset):
|
22 |
spectograms = []
|
23 |
-
y = []
|
24 |
|
25 |
for d in enumerate(dataset):
|
26 |
audio_sample = d["audio"]["array"] if d["audio"]["sampling_rate"] == 12000 else librosa.resample(
|
@@ -51,9 +50,8 @@ def create_spec(dataset):
|
|
51 |
mel_db = librosa.power_to_db(mel, ref=np.max)
|
52 |
mel_db_normalized = (mel_db - mel_db.mean()) / (mel_db.std() + 1e-8)
|
53 |
spectograms.append(np.float16(mel_db_normalized).T.flatten())
|
54 |
-
y.append(d["label"])
|
55 |
|
56 |
-
return np.stack(spectograms)
|
57 |
|
58 |
|
59 |
@router.post(ROUTE, tags=["Audio Task"],
|
@@ -86,9 +84,9 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
86 |
tracker.start()
|
87 |
tracker.start_task("inference")
|
88 |
|
89 |
-
test_spec
|
90 |
H = np.load("array_file.npy")
|
91 |
-
|
92 |
model_filename = 'model.joblib'
|
93 |
model = joblib.load(model_filename)
|
94 |
#--------------------------------------------------------------------------------------------
|
@@ -98,7 +96,7 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
98 |
|
99 |
# Make random predictions (placeholder for actual model inference)
|
100 |
true_labels = test_dataset["label"]
|
101 |
-
predictions = model.predict(
|
102 |
#--------------------------------------------------------------------------------------------
|
103 |
# YOUR MODEL INFERENCE STOPS HERE
|
104 |
#--------------------------------------------------------------------------------------------
|
|
|
20 |
ROUTE = "/audio"
|
21 |
def create_spec(dataset):
|
22 |
spectograms = []
|
|
|
23 |
|
24 |
for d in enumerate(dataset):
|
25 |
audio_sample = d["audio"]["array"] if d["audio"]["sampling_rate"] == 12000 else librosa.resample(
|
|
|
50 |
mel_db = librosa.power_to_db(mel, ref=np.max)
|
51 |
mel_db_normalized = (mel_db - mel_db.mean()) / (mel_db.std() + 1e-8)
|
52 |
spectograms.append(np.float16(mel_db_normalized).T.flatten())
|
|
|
53 |
|
54 |
+
return np.stack(spectograms)
|
55 |
|
56 |
|
57 |
@router.post(ROUTE, tags=["Audio Task"],
|
|
|
84 |
tracker.start()
|
85 |
tracker.start_task("inference")
|
86 |
|
87 |
+
test_spec = create_spec(test_dataset)
|
88 |
H = np.load("array_file.npy")
|
89 |
+
W_test = np.dot(test_spec, H)
|
90 |
model_filename = 'model.joblib'
|
91 |
model = joblib.load(model_filename)
|
92 |
#--------------------------------------------------------------------------------------------
|
|
|
96 |
|
97 |
# Make random predictions (placeholder for actual model inference)
|
98 |
true_labels = test_dataset["label"]
|
99 |
+
predictions = model.predict(W_test)
|
100 |
#--------------------------------------------------------------------------------------------
|
101 |
# YOUR MODEL INFERENCE STOPS HERE
|
102 |
#--------------------------------------------------------------------------------------------
|