Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,127 +1,83 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
# # Step 1: Read your background info
|
5 |
-
# with open("BACKGROUND.md", "r", encoding="utf-8") as f:
|
6 |
-
# background_text = f.read()
|
7 |
-
|
8 |
-
# # Step 2: Set up your InferenceClient (same as before)
|
9 |
-
# client = InferenceClient("google/gemma-2-2b-jpn-it")
|
10 |
-
# # HuggingFaceH4/zephyr-7b-beta
|
11 |
-
# def respond(
|
12 |
-
# message,
|
13 |
-
# history: list[dict],
|
14 |
-
# system_message: str,
|
15 |
-
# max_tokens: int,
|
16 |
-
# temperature: float,
|
17 |
-
# top_p: float,
|
18 |
-
# ):
|
19 |
-
# if history is None:
|
20 |
-
# history = []
|
21 |
-
|
22 |
-
# # Include background text as part of the system message for context
|
23 |
-
# combined_system_message = f"{system_message}\n\n### Background Information ###\n{background_text}"
|
24 |
-
|
25 |
-
# # Start building the conversation history
|
26 |
-
# messages = [{"role": "system", "content": combined_system_message}]
|
27 |
-
|
28 |
-
# # Add conversation history
|
29 |
-
# for interaction in history:
|
30 |
-
# if "user" in interaction:
|
31 |
-
# messages.append({"role": "user", "content": interaction["user"]})
|
32 |
-
# if "assistant" in interaction:
|
33 |
-
# messages.append({"role": "assistant", "content": interaction["assistant"]})
|
34 |
-
|
35 |
-
# # Add the latest user message
|
36 |
-
# messages.append({"role": "user", "content": message})
|
37 |
-
|
38 |
-
# # Generate response
|
39 |
-
# response = ""
|
40 |
-
# for msg in client.chat_completion(
|
41 |
-
# messages,
|
42 |
-
# max_tokens=max_tokens,
|
43 |
-
# stream=True,
|
44 |
-
# temperature=temperature,
|
45 |
-
# top_p=top_p,
|
46 |
-
# ):
|
47 |
-
|
48 |
-
# token = msg.choices[0].delta.content
|
49 |
-
# response += token
|
50 |
-
# yield response
|
51 |
-
# print("----- SYSTEM MESSAGE -----")
|
52 |
-
# print(messages[0]["content"])
|
53 |
-
# print("----- FULL MESSAGES LIST -----")
|
54 |
-
# for m in messages:
|
55 |
-
# print(m)
|
56 |
-
# print("-------------------------")
|
57 |
-
|
58 |
-
# # Step 3: Build a Gradio Blocks interface with two Tabs
|
59 |
-
# with gr.Blocks() as demo:
|
60 |
-
# # Tab 1: GPT Chat Agent
|
61 |
-
# with gr.Tab("GPT Chat Agent"):
|
62 |
-
# gr.Markdown("## Welcome to Varun's GPT Agent")
|
63 |
-
# gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!")
|
64 |
-
# chat = gr.ChatInterface(
|
65 |
-
# fn=respond,
|
66 |
-
# additional_inputs=[
|
67 |
-
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
68 |
-
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
69 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
70 |
-
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
71 |
-
# ],
|
72 |
-
# type="messages", # Specify message type
|
73 |
-
# )
|
74 |
-
|
75 |
-
# # # Tab 2: Background Document
|
76 |
-
# # with gr.Tab("Varun's Background"):
|
77 |
-
# # gr.Markdown("# About Varun")
|
78 |
-
# # gr.Markdown(background_text)
|
79 |
-
|
80 |
-
# # Step 4: Launch
|
81 |
-
# if __name__ == "__main__":
|
82 |
-
# demo.launch()
|
83 |
-
|
84 |
import gradio as gr
|
85 |
from huggingface_hub import InferenceClient
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
if history is None:
|
91 |
history = []
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
|
|
96 |
response = ""
|
97 |
-
for
|
98 |
-
|
99 |
-
|
|
|
100 |
temperature=temperature,
|
101 |
top_p=top_p,
|
102 |
-
stream=True,
|
103 |
):
|
104 |
-
|
105 |
-
|
|
|
106 |
yield response
|
107 |
-
|
108 |
-
|
109 |
-
print("
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
112 |
with gr.Blocks() as demo:
|
113 |
-
|
|
|
|
|
|
|
114 |
chat = gr.ChatInterface(
|
115 |
fn=respond,
|
116 |
additional_inputs=[
|
117 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
118 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
119 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
120 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
121 |
],
|
122 |
-
type="messages",
|
123 |
)
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
if __name__ == "__main__":
|
126 |
demo.launch()
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
# Step 1: Read your background info
|
5 |
+
with open("BACKGROUND.md", "r", encoding="utf-8") as f:
|
6 |
+
background_text = f.read()
|
7 |
+
|
8 |
+
# Step 2: Set up your InferenceClient (same as before)
|
9 |
+
client = InferenceClient("meta-llama/Llama-3.2-1B")
|
10 |
+
# HuggingFaceH4/zephyr-7b-beta
|
11 |
+
def respond(
|
12 |
+
message,
|
13 |
+
history: list[dict],
|
14 |
+
system_message: str,
|
15 |
+
max_tokens: int,
|
16 |
+
temperature: float,
|
17 |
+
top_p: float,
|
18 |
+
):
|
19 |
if history is None:
|
20 |
history = []
|
21 |
|
22 |
+
# Include background text as part of the system message for context
|
23 |
+
combined_system_message = f"{system_message}\n\n### Background Information ###\n{background_text}"
|
24 |
+
|
25 |
+
# Start building the conversation history
|
26 |
+
messages = [{"role": "system", "content": combined_system_message}]
|
27 |
+
|
28 |
+
# Add conversation history
|
29 |
+
for interaction in history:
|
30 |
+
if "user" in interaction:
|
31 |
+
messages.append({"role": "user", "content": interaction["user"]})
|
32 |
+
if "assistant" in interaction:
|
33 |
+
messages.append({"role": "assistant", "content": interaction["assistant"]})
|
34 |
+
|
35 |
+
# Add the latest user message
|
36 |
+
messages.append({"role": "user", "content": message})
|
37 |
|
38 |
+
# Generate response
|
39 |
response = ""
|
40 |
+
for msg in client.chat_completion(
|
41 |
+
messages,
|
42 |
+
max_tokens=max_tokens,
|
43 |
+
stream=True,
|
44 |
temperature=temperature,
|
45 |
top_p=top_p,
|
|
|
46 |
):
|
47 |
+
|
48 |
+
token = msg.choices[0].delta.content
|
49 |
+
response += token
|
50 |
yield response
|
51 |
+
print("----- SYSTEM MESSAGE -----")
|
52 |
+
print(messages[0]["content"])
|
53 |
+
print("----- FULL MESSAGES LIST -----")
|
54 |
+
for m in messages:
|
55 |
+
print(m)
|
56 |
+
print("-------------------------")
|
57 |
+
|
58 |
+
# Step 3: Build a Gradio Blocks interface with two Tabs
|
59 |
with gr.Blocks() as demo:
|
60 |
+
# Tab 1: GPT Chat Agent
|
61 |
+
with gr.Tab("GPT Chat Agent"):
|
62 |
+
gr.Markdown("## Welcome to Varun's GPT Agent")
|
63 |
+
gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!")
|
64 |
chat = gr.ChatInterface(
|
65 |
fn=respond,
|
66 |
additional_inputs=[
|
67 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
68 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
69 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
70 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
71 |
],
|
72 |
+
type="messages", # Specify message type
|
73 |
)
|
74 |
|
75 |
+
# # Tab 2: Background Document
|
76 |
+
# with gr.Tab("Varun's Background"):
|
77 |
+
# gr.Markdown("# About Varun")
|
78 |
+
# gr.Markdown(background_text)
|
79 |
+
|
80 |
+
# Step 4: Launch
|
81 |
if __name__ == "__main__":
|
82 |
demo.launch()
|
83 |
|