Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
@@ -5,9 +88,9 @@ from huggingface_hub import InferenceClient
|
|
5 |
with open("BACKGROUND.md", "r", encoding="utf-8") as f:
|
6 |
background_text = f.read()
|
7 |
|
8 |
-
# Step 2: Set up your InferenceClient (
|
9 |
client = InferenceClient("google/gemma-2-2b-jpn-it")
|
10 |
-
|
11 |
def respond(
|
12 |
message,
|
13 |
history: list[dict],
|
@@ -16,49 +99,54 @@ def respond(
|
|
16 |
temperature: float,
|
17 |
top_p: float,
|
18 |
):
|
|
|
|
|
|
|
|
|
|
|
19 |
if history is None:
|
20 |
history = []
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
# Start building the conversation history
|
26 |
-
messages = [{"role": "system", "content": combined_system_message}]
|
27 |
-
|
28 |
-
# Add conversation history
|
29 |
for interaction in history:
|
30 |
if "user" in interaction:
|
31 |
-
|
32 |
if "assistant" in interaction:
|
33 |
-
|
|
|
|
|
34 |
|
35 |
-
#
|
36 |
-
messages.append({"role": "user", "content": message})
|
37 |
-
|
38 |
-
# Generate response
|
39 |
response = ""
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
44 |
temperature=temperature,
|
45 |
top_p=top_p,
|
|
|
46 |
):
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
50 |
yield response
|
51 |
-
|
52 |
-
|
53 |
-
print("----- FULL
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
# Step 3: Build a Gradio Blocks interface with two Tabs
|
59 |
with gr.Blocks() as demo:
|
60 |
-
|
61 |
-
with gr.Tab("GPT Chat Agent"):
|
62 |
gr.Markdown("## Welcome to Varun's GPT Agent")
|
63 |
gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!")
|
64 |
chat = gr.ChatInterface(
|
@@ -69,10 +157,10 @@ with gr.Blocks() as demo:
|
|
69 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
70 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
71 |
],
|
72 |
-
type="messages", #
|
73 |
)
|
74 |
|
75 |
-
#
|
76 |
# with gr.Tab("Varun's Background"):
|
77 |
# gr.Markdown("# About Varun")
|
78 |
# gr.Markdown(background_text)
|
@@ -80,3 +168,4 @@ with gr.Blocks() as demo:
|
|
80 |
# Step 4: Launch
|
81 |
if __name__ == "__main__":
|
82 |
demo.launch()
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from huggingface_hub import InferenceClient
|
3 |
+
|
4 |
+
# # Step 1: Read your background info
|
5 |
+
# with open("BACKGROUND.md", "r", encoding="utf-8") as f:
|
6 |
+
# background_text = f.read()
|
7 |
+
|
8 |
+
# # Step 2: Set up your InferenceClient (same as before)
|
9 |
+
# client = InferenceClient("google/gemma-2-2b-jpn-it")
|
10 |
+
# # HuggingFaceH4/zephyr-7b-beta
|
11 |
+
# def respond(
|
12 |
+
# message,
|
13 |
+
# history: list[dict],
|
14 |
+
# system_message: str,
|
15 |
+
# max_tokens: int,
|
16 |
+
# temperature: float,
|
17 |
+
# top_p: float,
|
18 |
+
# ):
|
19 |
+
# if history is None:
|
20 |
+
# history = []
|
21 |
+
|
22 |
+
# # Include background text as part of the system message for context
|
23 |
+
# combined_system_message = f"{system_message}\n\n### Background Information ###\n{background_text}"
|
24 |
+
|
25 |
+
# # Start building the conversation history
|
26 |
+
# messages = [{"role": "system", "content": combined_system_message}]
|
27 |
+
|
28 |
+
# # Add conversation history
|
29 |
+
# for interaction in history:
|
30 |
+
# if "user" in interaction:
|
31 |
+
# messages.append({"role": "user", "content": interaction["user"]})
|
32 |
+
# if "assistant" in interaction:
|
33 |
+
# messages.append({"role": "assistant", "content": interaction["assistant"]})
|
34 |
+
|
35 |
+
# # Add the latest user message
|
36 |
+
# messages.append({"role": "user", "content": message})
|
37 |
+
|
38 |
+
# # Generate response
|
39 |
+
# response = ""
|
40 |
+
# for msg in client.chat_completion(
|
41 |
+
# messages,
|
42 |
+
# max_tokens=max_tokens,
|
43 |
+
# stream=True,
|
44 |
+
# temperature=temperature,
|
45 |
+
# top_p=top_p,
|
46 |
+
# ):
|
47 |
+
|
48 |
+
# token = msg.choices[0].delta.content
|
49 |
+
# response += token
|
50 |
+
# yield response
|
51 |
+
# print("----- SYSTEM MESSAGE -----")
|
52 |
+
# print(messages[0]["content"])
|
53 |
+
# print("----- FULL MESSAGES LIST -----")
|
54 |
+
# for m in messages:
|
55 |
+
# print(m)
|
56 |
+
# print("-------------------------")
|
57 |
+
|
58 |
+
# # Step 3: Build a Gradio Blocks interface with two Tabs
|
59 |
+
# with gr.Blocks() as demo:
|
60 |
+
# # Tab 1: GPT Chat Agent
|
61 |
+
# with gr.Tab("GPT Chat Agent"):
|
62 |
+
# gr.Markdown("## Welcome to Varun's GPT Agent")
|
63 |
+
# gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!")
|
64 |
+
# chat = gr.ChatInterface(
|
65 |
+
# fn=respond,
|
66 |
+
# additional_inputs=[
|
67 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
68 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
69 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
70 |
+
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
71 |
+
# ],
|
72 |
+
# type="messages", # Specify message type
|
73 |
+
# )
|
74 |
+
|
75 |
+
# # # Tab 2: Background Document
|
76 |
+
# # with gr.Tab("Varun's Background"):
|
77 |
+
# # gr.Markdown("# About Varun")
|
78 |
+
# # gr.Markdown(background_text)
|
79 |
+
|
80 |
+
# # Step 4: Launch
|
81 |
+
# if __name__ == "__main__":
|
82 |
+
# demo.launch()
|
83 |
+
|
84 |
import gradio as gr
|
85 |
from huggingface_hub import InferenceClient
|
86 |
|
|
|
88 |
with open("BACKGROUND.md", "r", encoding="utf-8") as f:
|
89 |
background_text = f.read()
|
90 |
|
91 |
+
# Step 2: Set up your InferenceClient (using text-generation instead of chat)
|
92 |
client = InferenceClient("google/gemma-2-2b-jpn-it")
|
93 |
+
|
94 |
def respond(
|
95 |
message,
|
96 |
history: list[dict],
|
|
|
99 |
temperature: float,
|
100 |
top_p: float,
|
101 |
):
|
102 |
+
"""
|
103 |
+
Merges 'system_message', 'background_text', and conversation 'history'
|
104 |
+
into a single text prompt, then calls client.text_generation(...)
|
105 |
+
for a response.
|
106 |
+
"""
|
107 |
if history is None:
|
108 |
history = []
|
109 |
|
110 |
+
# Combine system instructions + background + prior conversation + new user message
|
111 |
+
prompt = f"{system_message}\n\n### Background Information ###\n{background_text}\n\n"
|
|
|
|
|
|
|
|
|
|
|
112 |
for interaction in history:
|
113 |
if "user" in interaction:
|
114 |
+
prompt += f"User: {interaction['user']}\n"
|
115 |
if "assistant" in interaction:
|
116 |
+
prompt += f"Assistant: {interaction['assistant']}\n"
|
117 |
+
# Add the latest user query
|
118 |
+
prompt += f"User: {message}\nAssistant:" # We'll generate the Assistant's text after this
|
119 |
|
120 |
+
# Generate response using text_generation in streaming mode
|
|
|
|
|
|
|
121 |
response = ""
|
122 |
+
# The text returned will include the entire prompt + new text,
|
123 |
+
# so we’ll need to subtract out the prompt length to isolate the new portion.
|
124 |
+
prompt_length = len(prompt)
|
125 |
+
|
126 |
+
for chunk in client.text_generation(
|
127 |
+
prompt=prompt,
|
128 |
+
max_new_tokens=max_tokens,
|
129 |
temperature=temperature,
|
130 |
top_p=top_p,
|
131 |
+
stream=True, # streaming each chunk
|
132 |
):
|
133 |
+
# Each chunk is a dict like {"generated_text": "full text so far..."}
|
134 |
+
full_text = chunk["generated_text"]
|
135 |
+
# The newly generated portion is what's after the original prompt
|
136 |
+
new_text = full_text[prompt_length:]
|
137 |
+
response += new_text
|
138 |
+
prompt_length = len(full_text) # update for next chunk
|
139 |
yield response
|
140 |
+
|
141 |
+
# For debugging: show what we actually sent
|
142 |
+
print("----- FULL PROMPT -----")
|
143 |
+
print(prompt)
|
144 |
+
print("----- END PROMPT -----")
|
145 |
+
|
146 |
+
|
147 |
# Step 3: Build a Gradio Blocks interface with two Tabs
|
148 |
with gr.Blocks() as demo:
|
149 |
+
with gr.Tab("Gemma Chat Agent"):
|
|
|
150 |
gr.Markdown("## Welcome to Varun's GPT Agent")
|
151 |
gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!")
|
152 |
chat = gr.ChatInterface(
|
|
|
157 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
158 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
159 |
],
|
160 |
+
type="messages", # Gradio will keep track of (user, assistant) messages in history
|
161 |
)
|
162 |
|
163 |
+
# Optional: If you want a separate tab to display background_text
|
164 |
# with gr.Tab("Varun's Background"):
|
165 |
# gr.Markdown("# About Varun")
|
166 |
# gr.Markdown(background_text)
|
|
|
168 |
# Step 4: Launch
|
169 |
if __name__ == "__main__":
|
170 |
demo.launch()
|
171 |
+
|