File size: 6,487 Bytes
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
bb0d0b7
 
6b106ff
dd78229
145962d
d429324
 
 
 
 
 
dd78229
145962d
88a4add
 
 
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ada80e8
9e9b470
 
 
 
ada80e8
 
dd78229
8f3efc0
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fefce99
 
 
 
 
 
dd78229
 
 
 
 
 
 
 
 
 
6b106ff
dd78229
 
 
 
 
 
 
 
 
 
02b6361
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
525f14a
dd78229
 
 
 
02b6361
 
 
 
 
dd78229
 
 
 
 
02b6361
dd78229
 
 
bad7981
d429324
004187c
d429324
dd78229
 
4eed812
 
dd78229
 
4eed812
dd78229
4eed812
dd78229
 
4eed812
dd78229
4eed812
dd78229
bad7981
 
 
 
 
21b73f5
5891d84
 
 
dd78229
 
 
bad7981
10b0c9c
20f349a
 
dd78229
bad7981
b3dd7de
bad7981
 
5f1bb17
20f349a
 
 
dd78229
d960b9d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import numpy as np
import requests
import torch
import yaml
from PIL import Image
from torchvision import transforms

from segmenter_model import utils
from segmenter_model.factory import create_segmenter
from segmenter_model.fpn_picie import PanopticFPN
from segmenter_model.utils import colorize_one, map2cs

# WEIGHTS = './weights/segmenter.pth
WEIGHTS = './weights/segmenter_nusc.pth'
FULL = True


def blend_images(bg, fg, alpha=0.3):
    fg = fg.convert('RGBA')
    bg = bg.convert('RGBA')
    blended = Image.blend(bg, fg, alpha=alpha)

    return blended


def download_file_from_google_drive(destination=WEIGHTS):
    id = '1v6_d2KHzRROsjb_cgxU7jvmnGVDXeBia'

    def get_confirm_token(response):
        for key, value in response.cookies.items():
            if key.startswith('download_warning'):
                return value

        return None

    def save_response_content(response, destination):
        CHUNK_SIZE = 32768

        with open(destination, "wb") as f:
            for chunk in response.iter_content(CHUNK_SIZE):
                if chunk:  # filter out keep-alive new chunks
                    f.write(chunk)

    URL = "https://docs.google.com/uc?export=download"

    session = requests.Session()

    response = session.get(URL, params={'id': id}, stream=True)
    token = get_confirm_token(response)

    if token:
        params = {'id': id, 'confirm': token}
        response = session.get(URL, params=params, stream=True)

    save_response_content(response, destination)


def download_weights():
    # if not os.path.exists(WEIGHTS):
    url = 'https://data.ciirc.cvut.cz/public/projects/2022DriveAndSegment/segmenter_nusc.pth'
    import urllib.request
    urllib.request.urlretrieve(url, WEIGHTS)


def segment_segmenter(image, model, window_size, window_stride, encoder_features=False, decoder_features=False,
                      no_upsample=False, batch_size=1):
    seg_pred = utils.inference(
        model,
        image,
        image.shape[-2:],
        window_size,
        window_stride,
        batch_size=batch_size,
        no_upsample=no_upsample,
        encoder_features=encoder_features,
        decoder_features=decoder_features
    )
    if not (encoder_features or decoder_features):
        seg_pred = seg_pred.argmax(1).unsqueeze(1)
    return seg_pred


def remap(seg_pred, ignore=255):
    if 'nusc' in WEIGHTS.lower():
        mapping = {0: 0, 13: 1, 2: 2, 7: 3, 17: 4, 20: 5, 8: 6, 12: 7, 26: 8, 14: 9, 22: 10, 11: 11, 6: 12, 27: 13,
                   10: 14, 19: 15, 24: 16, 9: 17, 4: 18}
    else:
        mapping = {0: 0, 12: 1, 15: 2, 23: 3, 10: 4, 14: 5, 18: 6, 2: 7, 17: 8, 13: 9, 8: 10, 3: 11, 27: 12, 4: 13,
                   25: 14, 24: 15, 6: 16, 22: 17, 28: 18}
    h, w = seg_pred.shape[-2:]
    seg_pred_remap = np.ones((h, w), dtype=np.uint8) * ignore
    for pseudo, gt in mapping.items():
        whr = seg_pred == pseudo
        seg_pred_remap[whr] = gt
    return seg_pred_remap


def create_model(resnet=False):
    weights_path = WEIGHTS
    variant_path = '{}_variant{}.yml'.format(weights_path, '_full' if FULL else '')

    print('Use weights {}'.format(weights_path))
    print('Load variant from {}'.format(variant_path))
    variant = yaml.load(
        open(variant_path, "r"), Loader=yaml.FullLoader
    )

    # TODO: parse hyperparameters
    window_size = variant['inference_kwargs']["window_size"]
    window_stride = variant['inference_kwargs']["window_stride"]
    im_size = variant['inference_kwargs']["im_size"]

    net_kwargs = variant["net_kwargs"]
    if not resnet:
        net_kwargs['decoder']['dropout'] = 0.

    # TODO: create model
    if resnet:
        model = PanopticFPN(arch=net_kwargs['backbone'], pretrain=net_kwargs['pretrain'], n_cls=net_kwargs['n_cls'])
    else:
        model = create_segmenter(net_kwargs)

    # TODO: load weights
    print('Load weights from {}'.format(weights_path))
    weights = torch.load(weights_path, map_location=torch.device('cpu'))['model']
    model.load_state_dict(weights, strict=True)

    model.eval()

    return model, window_size, window_stride, im_size


download_weights()
model, window_size, window_stride, im_size = create_model()


def get_transformations():
    return transforms.Compose([
        transforms.ToTensor(),
        transforms.Resize(im_size),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])


def predict(input_img, cs_mapping):
    input_img_pil = Image.open(input_img)
    transform = get_transformations()
    input_img = transform(input_img_pil)
    input_img = torch.unsqueeze(input_img, 0)

    print('Loaded and prepaded image.')

    with torch.no_grad():
        segmentation = segment_segmenter(input_img, model, window_size, window_stride).squeeze().detach()
        print('Segmented image.')
        segmentation_remap = remap(segmentation)
        print('Remapped image.')

    drawing_pseudo = colorize_one(segmentation_remap)
    print('Pseudo colors done.')
    drawing_cs = map2cs(segmentation_remap)
    print('CS colors done.')

    if cs_mapping:
        drawing = drawing_cs
    else:
        drawing = drawing_pseudo

    drawing = transforms.ToPILImage()(drawing).resize(input_img_pil.size)
    drawing_blend = blend_images(input_img_pil, drawing)

    return drawing_blend


title = "Drive&Segment"
description = 'Gradio Demo accompanying paper "Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation"\nBecause of the CPU-only inference, it might take up to 20s for large images.\nRight now, I use the Segmenter model trained on nuScenes and with 256x256 patches (for the sake of speed).'
# article = "<p style='text-align: center'><a href='TODO' target='_blank'>Project Page</a> | <a href='codelink' target='_blank'>Github</a></p>"
examples = [['examples/img5.jpeg', True], ['examples/100.jpeg', True], ['examples/39076.jpeg', True],
            ['examples/img1.jpg', True]]

# predict(examples[0])

iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'), gr.inputs.Checkbox(label="Cityscapes mapping")],
                     "image", title=title, description=description,
                     examples=examples)
# iface = gr.Interface(predict, gr.inputs.Image(type='filepath'),
#                      "image", title=title, description=description,
#                      examples=examples)

# iface.launch(show_error=True, share=True)
iface.launch(show_error=True)