File size: 4,966 Bytes
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr
import numpy as np
import requests
import torch
import yaml
from PIL import Image
from torchvision import transforms

from segmenter_model import utils
from segmenter_model.factory import create_segmenter
from segmenter_model.fpn_picie import PanopticFPN
from segmenter_model.utils import colorize_one, map2cs

WEIGHTS = './weights/segmenter.pth'


def download_file_from_google_drive(id, destination):
    def get_confirm_token(response):
        for key, value in response.cookies.items():
            if key.startswith('download_warning'):
                return value

        return None

    def save_response_content(response, destination):
        CHUNK_SIZE = 32768

        with open(destination, "wb") as f:
            for chunk in response.iter_content(CHUNK_SIZE):
                if chunk:  # filter out keep-alive new chunks
                    f.write(chunk)

    URL = "https://docs.google.com/uc?export=download"

    session = requests.Session()

    response = session.get(URL, params={'id': id}, stream=True)
    token = get_confirm_token(response)

    if token:
        params = {'id': id, 'confirm': token}
        response = session.get(URL, params=params, stream=True)

    save_response_content(response, destination)


def segment_segmenter(image, model, window_size, window_stride, encoder_features=False, decoder_features=False,
                      no_upsample=False, batch_size=2):
    seg_pred = utils.inference(
        model,
        image,
        image.shape[-2:],
        window_size,
        window_stride,
        batch_size=batch_size,
        no_upsample=no_upsample,
        encoder_features=encoder_features,
        decoder_features=decoder_features
    )
    if not (encoder_features or decoder_features):
        seg_pred = seg_pred.argmax(1).unsqueeze(1)
    return seg_pred


def remap(seg_pred, ignore=255):
    mapping = {0: 0, 12: 1, 15: 2, 23: 3, 10: 4, 14: 5, 18: 6, 2: 7, 17: 8, 13: 9, 8: 10, 3: 11, 27: 12, 4: 13, 25: 14,
               24: 15, 6: 16, 22: 17, 28: 18}
    h, w = seg_pred.shape[-2:]
    seg_pred_remap = np.ones((h, w), dtype=np.uint8) * ignore
    for pseudo, gt in mapping.items():
        whr = seg_pred == pseudo
        seg_pred_remap[whr] = gt
    return seg_pred_remap


def create_model(resnet=False):
    weights_path = WEIGHTS
    variant_path = '{}_variant.yml'.format(weights_path)

    print('Use weights {}'.format(weights_path))
    print('Load variant from {}'.format(variant_path))
    variant = yaml.load(
        open(variant_path, "r"), Loader=yaml.FullLoader
    )

    # TODO: parse hyperparameters
    window_size = variant['inference_kwargs']["window_size"]
    window_stride = variant['inference_kwargs']["window_stride"]
    dataset_kwargs = variant['dataset_kwargs']
    net_kwargs = variant["net_kwargs"]
    net_kwargs['n_cls'] = dataset_kwargs['nlabels']

    dataset_kwargs = variant['dataset_kwargs']

    net_kwargs = variant["net_kwargs"]
    net_kwargs['n_cls'] = dataset_kwargs['nlabels']
    if not resnet:
        net_kwargs['decoder']['dropout'] = 0.

    # TODO: create model
    if resnet:
        model = PanopticFPN(arch=net_kwargs['backbone'], pretrain=net_kwargs['pretrain'], n_cls=net_kwargs['n_cls'])
    else:
        model = create_segmenter(net_kwargs)

    # TODO: load weights
    print('Load weights from {}'.format(weights_path))
    weights = torch.load(weights_path)['model']
    model.load_state_dict(weights, strict=True)

    model.eval()

    return model, window_size, window_stride


def get_transformations():
    return transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])


model, window_size, window_stride = create_model()


def predict(input_img):
    input_img = Image.open(input_img)
    transform = transforms.Compose([transforms.Resize(256, Image.BICUBIC), transforms.ToTensor()])
    input_img = transform(input_img)
    input_img = torch.unsqueeze(input_img, 0)

    with torch.no_grad():
        segmentation = segment_segmenter(input_img, model, window_size, window_stride).squeeze().detach()
        segmentation_remap = remap(segmentation)

    drawing_pseudo = colorize_one(segmentation_remap)
    drawing_cs = map2cs(segmentation_remap)

    drawing_pseudo = transforms.ToPILImage()(drawing_pseudo)
    drawing_cs = transforms.ToPILImage()(drawing_cs)
    return drawing_pseudo, drawing_cs


title = "Drive&Segment"
description = 'Gradio Demo accompanying paper "Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation"'
# article = "<p style='text-align: center'><a href='TODO' target='_blank'>Project Page</a> | <a href='codelink' target='_blank'>Github</a></p>"
examples = [['examples/img1.jpg']]

iface = gr.Interface(predict, gr.inputs.Image(type='filepath'), "image", title=title, description=description,
                     examples=examples)

iface.launch()