File size: 5,319 Bytes
b0beb39 dd78229 bb0d0b7 dd78229 88a4add dd78229 ada80e8 9e9b470 ada80e8 dd78229 8f3efc0 dd78229 525f14a dd78229 66cdd72 dd78229 004187c dd78229 4eed812 dd78229 4eed812 dd78229 4eed812 dd78229 4eed812 dd78229 4eed812 dd78229 b0beb39 dd78229 b0beb39 dd78229 4755444 dd78229 4322811 b3dd7de dd78229 b3dd7de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
import gradio as gr
import numpy as np
import requests
import torch
import yaml
from PIL import Image
from torchvision import transforms
from segmenter_model import utils
from segmenter_model.factory import create_segmenter
from segmenter_model.fpn_picie import PanopticFPN
from segmenter_model.utils import colorize_one, map2cs
# WEIGHTS = './weights/segmenter.pth
WEIGHTS = './weights/segmenter_nusc.pth'
def download_file_from_google_drive(destination=WEIGHTS):
id = '1v6_d2KHzRROsjb_cgxU7jvmnGVDXeBia'
def get_confirm_token(response):
for key, value in response.cookies.items():
if key.startswith('download_warning'):
return value
return None
def save_response_content(response, destination):
CHUNK_SIZE = 32768
with open(destination, "wb") as f:
for chunk in response.iter_content(CHUNK_SIZE):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
URL = "https://docs.google.com/uc?export=download"
session = requests.Session()
response = session.get(URL, params={'id': id}, stream=True)
token = get_confirm_token(response)
if token:
params = {'id': id, 'confirm': token}
response = session.get(URL, params=params, stream=True)
save_response_content(response, destination)
def download_weights():
# if not os.path.exists(WEIGHTS):
url = 'https://data.ciirc.cvut.cz/public/projects/2022DriveAndSegment/segmenter_nusc.pth'
import urllib.request
urllib.request.urlretrieve(url, WEIGHTS)
def segment_segmenter(image, model, window_size, window_stride, encoder_features=False, decoder_features=False,
no_upsample=False, batch_size=1):
seg_pred = utils.inference(
model,
image,
image.shape[-2:],
window_size,
window_stride,
batch_size=batch_size,
no_upsample=no_upsample,
encoder_features=encoder_features,
decoder_features=decoder_features
)
if not (encoder_features or decoder_features):
seg_pred = seg_pred.argmax(1).unsqueeze(1)
return seg_pred
def remap(seg_pred, ignore=255):
mapping = {0: 0, 12: 1, 15: 2, 23: 3, 10: 4, 14: 5, 18: 6, 2: 7, 17: 8, 13: 9, 8: 10, 3: 11, 27: 12, 4: 13, 25: 14,
24: 15, 6: 16, 22: 17, 28: 18}
h, w = seg_pred.shape[-2:]
seg_pred_remap = np.ones((h, w), dtype=np.uint8) * ignore
for pseudo, gt in mapping.items():
whr = seg_pred == pseudo
seg_pred_remap[whr] = gt
return seg_pred_remap
def create_model(resnet=False):
weights_path = WEIGHTS
variant_path = '{}_variant.yml'.format(weights_path)
print('Use weights {}'.format(weights_path))
print('Load variant from {}'.format(variant_path))
variant = yaml.load(
open(variant_path, "r"), Loader=yaml.FullLoader
)
# TODO: parse hyperparameters
window_size = variant['inference_kwargs']["window_size"]
window_stride = variant['inference_kwargs']["window_stride"]
net_kwargs = variant["net_kwargs"]
if not resnet:
net_kwargs['decoder']['dropout'] = 0.
# TODO: create model
if resnet:
model = PanopticFPN(arch=net_kwargs['backbone'], pretrain=net_kwargs['pretrain'], n_cls=net_kwargs['n_cls'])
else:
model = create_segmenter(net_kwargs)
# TODO: load weights
print('Load weights from {}'.format(weights_path))
weights = torch.load(weights_path, map_location=torch.device('cpu'))['model']
model.load_state_dict(weights, strict=True)
model.eval()
return model, window_size, window_stride
def get_transformations():
return transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
download_weights()
model, window_size, window_stride = create_model()
def predict(input_img):
input_img = Image.open(input_img)
transform = get_transformations()
input_img = transform(input_img)
input_img = torch.unsqueeze(input_img, 0)
print('Loaded and prepaded image.')
with torch.no_grad():
segmentation = segment_segmenter(input_img, model, window_size, window_stride).squeeze().detach()
print('Segmented image.')
segmentation_remap = remap(segmentation)
print('Remapped image.')
drawing_pseudo = colorize_one(segmentation_remap)
print('Pseudo colors done.')
drawing_cs = map2cs(segmentation_remap)
print('CS colors done.')
# drawing_pseudo = transforms.ToPILImage()(drawing_pseudo)
drawing_cs = transforms.ToPILImage()(drawing_cs)
# return drawing_pseudo, drawing_cs
return drawing_cs
title = "Drive&Segment"
description = 'Gradio Demo accompanying paper "Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation"'
# article = "<p style='text-align: center'><a href='TODO' target='_blank'>Project Page</a> | <a href='codelink' target='_blank'>Github</a></p>"
examples = ['examples/img1.jpg', 'examples/img2.jpeg']
# predict(examples[0])
iface = gr.Interface(predict, gr.inputs.Image(type='filepath'), "image", title=title, description=description,
examples=examples)
iface.launch(debug=True, show_error=True)
|