File size: 3,299 Bytes
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""
Adapted from 2020 Ross Wightman
https://github.com/rwightman/pytorch-image-models
"""

import torch
import torch.nn as nn
from einops import rearrange
from pathlib import Path

import torch.nn.functional as F

from timm.models.layers import DropPath


class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout, out_dim=None):
        super().__init__()
        self.fc1 = nn.Linear(dim, hidden_dim)
        self.act = nn.GELU()
        if out_dim is None:
            out_dim = dim
        self.fc2 = nn.Linear(hidden_dim, out_dim)
        self.drop = nn.Dropout(dropout)

    @property
    def unwrapped(self):
        return self

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, heads, dropout):
        super().__init__()
        self.heads = heads
        head_dim = dim // heads
        self.scale = head_dim ** -0.5
        self.attn = None

        self.qkv = nn.Linear(dim, dim * 3)
        self.attn_drop = nn.Dropout(dropout)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(dropout)

    @property
    def unwrapped(self):
        return self

    def forward(self, x, mask=None):
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
                .reshape(B, N, 3, self.heads, C // self.heads)
                .permute(2, 0, 3, 1, 4)
        )
        q, k, v = (
            qkv[0],
            qkv[1],
            qkv[2],
        )

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x, attn


class AttentionQK(nn.Module):
    def __init__(self, dim, heads=1, dropout=0.):
        super().__init__()
        self.heads = heads
        head_dim = dim // heads
        self.scale = head_dim ** -0.5
        self.attn = None

        self.qk = nn.Linear(dim, dim * 2)
        self.attn_drop = nn.Dropout(dropout)

    @property
    def unwrapped(self):
        return self

    def forward(self, x):
        B, N, C = x.shape
        qkv = (
            self.qk(x)
                .reshape(B, N, 2, self.heads, C // self.heads)
                .permute(2, 0, 3, 1, 4)
        )
        q, k = (
            qkv[0],
            qkv[1]
        )

        attn = (q @ k.transpose(-2, -1)) * self.scale
        # attn = attn.sigmoid()
        attn = attn.softmax(dim=-1)

        return attn


class Block(nn.Module):
    def __init__(self, dim, heads, mlp_dim, dropout, drop_path):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.attn = Attention(dim, heads, dropout)
        self.mlp = FeedForward(dim, mlp_dim, dropout)
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x, mask=None, return_attention=False):
        y, attn = self.attn(self.norm1(x), mask)
        if return_attention:
            return attn
        x = x + self.drop_path(y)
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x