File size: 3,299 Bytes
dd78229 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
"""
Adapted from 2020 Ross Wightman
https://github.com/rwightman/pytorch-image-models
"""
import torch
import torch.nn as nn
from einops import rearrange
from pathlib import Path
import torch.nn.functional as F
from timm.models.layers import DropPath
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout, out_dim=None):
super().__init__()
self.fc1 = nn.Linear(dim, hidden_dim)
self.act = nn.GELU()
if out_dim is None:
out_dim = dim
self.fc2 = nn.Linear(hidden_dim, out_dim)
self.drop = nn.Dropout(dropout)
@property
def unwrapped(self):
return self
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, heads, dropout):
super().__init__()
self.heads = heads
head_dim = dim // heads
self.scale = head_dim ** -0.5
self.attn = None
self.qkv = nn.Linear(dim, dim * 3)
self.attn_drop = nn.Dropout(dropout)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(dropout)
@property
def unwrapped(self):
return self
def forward(self, x, mask=None):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.heads, C // self.heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
class AttentionQK(nn.Module):
def __init__(self, dim, heads=1, dropout=0.):
super().__init__()
self.heads = heads
head_dim = dim // heads
self.scale = head_dim ** -0.5
self.attn = None
self.qk = nn.Linear(dim, dim * 2)
self.attn_drop = nn.Dropout(dropout)
@property
def unwrapped(self):
return self
def forward(self, x):
B, N, C = x.shape
qkv = (
self.qk(x)
.reshape(B, N, 2, self.heads, C // self.heads)
.permute(2, 0, 3, 1, 4)
)
q, k = (
qkv[0],
qkv[1]
)
attn = (q @ k.transpose(-2, -1)) * self.scale
# attn = attn.sigmoid()
attn = attn.softmax(dim=-1)
return attn
class Block(nn.Module):
def __init__(self, dim, heads, mlp_dim, dropout, drop_path):
super().__init__()
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.attn = Attention(dim, heads, dropout)
self.mlp = FeedForward(dim, mlp_dim, dropout)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x, mask=None, return_attention=False):
y, attn = self.attn(self.norm1(x), mask)
if return_attention:
return attn
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
|