DaS / app.py
vobecant
Initial commit.
bd42ce3
raw
history blame
4.73 kB
import gradio as gr
import numpy as np
import requests
import torch
import yaml
from PIL import Image
from torchvision import transforms
from segmenter_model import utils
from segmenter_model.factory import create_segmenter
from segmenter_model.fpn_picie import PanopticFPN
from segmenter_model.utils import colorize_one, map2cs
WEIGHTS = './weights/segmenter.pth'
def download_file_from_google_drive(id, destination):
def get_confirm_token(response):
for key, value in response.cookies.items():
if key.startswith('download_warning'):
return value
return None
def save_response_content(response, destination):
CHUNK_SIZE = 32768
with open(destination, "wb") as f:
for chunk in response.iter_content(CHUNK_SIZE):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
URL = "https://docs.google.com/uc?export=download"
session = requests.Session()
response = session.get(URL, params={'id': id}, stream=True)
token = get_confirm_token(response)
if token:
params = {'id': id, 'confirm': token}
response = session.get(URL, params=params, stream=True)
save_response_content(response, destination)
def segment_segmenter(image, model, window_size, window_stride, encoder_features=False, decoder_features=False,
no_upsample=False, batch_size=2):
seg_pred = utils.inference(
model,
image,
image.shape[-2:],
window_size,
window_stride,
batch_size=batch_size,
no_upsample=no_upsample,
encoder_features=encoder_features,
decoder_features=decoder_features
)
if not (encoder_features or decoder_features):
seg_pred = seg_pred.argmax(1).unsqueeze(1)
return seg_pred
def remap(seg_pred, ignore=255):
mapping = {0: 0, 12: 1, 15: 2, 23: 3, 10: 4, 14: 5, 18: 6, 2: 7, 17: 8, 13: 9, 8: 10, 3: 11, 27: 12, 4: 13, 25: 14,
24: 15, 6: 16, 22: 17, 28: 18}
h, w = seg_pred.shape[-2:]
seg_pred_remap = np.ones((h, w), dtype=np.uint8) * ignore
for pseudo, gt in mapping.items():
whr = seg_pred == pseudo
seg_pred_remap[whr] = gt
return seg_pred_remap
def create_model(resnet=False):
weights_path = WEIGHTS
variant_path = '{}_variant.yml'.format(weights_path)
print('Use weights {}'.format(weights_path))
print('Load variant from {}'.format(variant_path))
variant = yaml.load(
open(variant_path, "r"), Loader=yaml.FullLoader
)
# TODO: parse hyperparameters
window_size = variant['inference_kwargs']["window_size"]
window_stride = variant['inference_kwargs']["window_stride"]
net_kwargs = variant["net_kwargs"]
if not resnet:
net_kwargs['decoder']['dropout'] = 0.
# TODO: create model
if resnet:
model = PanopticFPN(arch=net_kwargs['backbone'], pretrain=net_kwargs['pretrain'], n_cls=net_kwargs['n_cls'])
else:
model = create_segmenter(net_kwargs)
# TODO: load weights
print('Load weights from {}'.format(weights_path))
weights = torch.load(weights_path)['model']
model.load_state_dict(weights, strict=True)
model.eval()
return model, window_size, window_stride
def get_transformations():
return transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
model, window_size, window_stride = create_model()
def predict(input_img):
input_img = Image.open(input_img)
transform = transforms.Compose([transforms.Resize(256, Image.BICUBIC), transforms.ToTensor()])
input_img = transform(input_img)
input_img = torch.unsqueeze(input_img, 0)
with torch.no_grad():
segmentation = segment_segmenter(input_img, model, window_size, window_stride).squeeze().detach()
segmentation_remap = remap(segmentation)
drawing_pseudo = colorize_one(segmentation_remap)
drawing_cs = map2cs(segmentation_remap)
drawing_pseudo = transforms.ToPILImage()(drawing_pseudo)
drawing_cs = transforms.ToPILImage()(drawing_cs)
return drawing_pseudo, drawing_cs
title = "Drive&Segment"
description = 'Gradio Demo accompanying paper "Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation"'
# article = "<p style='text-align: center'><a href='TODO' target='_blank'>Project Page</a> | <a href='codelink' target='_blank'>Github</a></p>"
examples = [['examples/img1.jpg']]
iface = gr.Interface(predict, gr.inputs.Image(type='filepath'), "image", title=title, description=description,
examples=examples)
iface.launch()