DaS / segmenter_model /resnet_dilated.py
vobecant
Initial commit
dd78229
#
# Authors: Wouter Van Gansbeke & Simon Vandenhende
# Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
import torch.nn as nn
class ResnetDilated(nn.Module):
def __init__(self, orig_resnet, dilate_scale=8):
super(ResnetDilated, self).__init__()
from functools import partial
if dilate_scale == 8:
orig_resnet.layer3.apply(
partial(self._nostride_dilate, dilate=2))
orig_resnet.layer4.apply(
partial(self._nostride_dilate, dilate=4))
elif dilate_scale == 16:
orig_resnet.layer4.apply(
partial(self._nostride_dilate, dilate=2))
self.conv1 = orig_resnet.conv1
self.bn1 = orig_resnet.bn1
self.relu = orig_resnet.relu
self.maxpool = orig_resnet.maxpool
self.layer1 = orig_resnet.layer1
self.layer2 = orig_resnet.layer2
self.layer3 = orig_resnet.layer3
self.layer4 = orig_resnet.layer4
def _nostride_dilate(self, m, dilate):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
# the convolution with stride
if m.stride == (2, 2):
m.stride = (1, 1)
if m.kernel_size == (3, 3):
m.dilation = (dilate//2, dilate//2)
m.padding = (dilate//2, dilate//2)
# other convoluions
else:
if m.kernel_size == (3, 3):
m.dilation = (dilate, dilate)
m.padding = (dilate, dilate)
def forward(self, x):
x = self.relu(self.bn1(self.conv1(x)))
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x