vobecant
commited on
Commit
·
2762176
1
Parent(s):
435cc18
Initial commit.
Browse files
app.py
CHANGED
@@ -14,9 +14,10 @@ from segmenter_model.utils import colorize_one, map2cs
|
|
14 |
# WEIGHTS = './weights/segmenter.pth
|
15 |
WEIGHTS = './weights/segmenter_nusc.pth'
|
16 |
FULL = True
|
|
|
17 |
|
18 |
|
19 |
-
def blend_images(bg, fg, alpha=
|
20 |
fg = fg.convert('RGBA')
|
21 |
bg = bg.convert('RGBA')
|
22 |
blended = Image.blend(bg, fg, alpha=alpha)
|
@@ -135,10 +136,12 @@ download_weights()
|
|
135 |
model, window_size, window_stride, im_size = create_model()
|
136 |
|
137 |
|
138 |
-
def get_transformations():
|
139 |
trans_list = [transforms.ToTensor()]
|
140 |
|
141 |
-
|
|
|
|
|
142 |
trans_list.append(transforms.Resize(im_size))
|
143 |
|
144 |
trans_list.append(transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
|
@@ -148,7 +151,7 @@ def get_transformations():
|
|
148 |
|
149 |
def predict(input_img, cs_mapping):
|
150 |
input_img_pil = Image.open(input_img)
|
151 |
-
transform = get_transformations()
|
152 |
input_img = transform(input_img_pil)
|
153 |
input_img = torch.unsqueeze(input_img, 0)
|
154 |
|
@@ -186,7 +189,7 @@ examples = [['examples/img5.jpeg', True], ['examples/100.jpeg', True], ['example
|
|
186 |
|
187 |
iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'), gr.inputs.Checkbox(label="Cityscapes mapping")],
|
188 |
"image", title=title, description=description,
|
189 |
-
examples=examples)
|
190 |
# iface = gr.Interface(predict, gr.inputs.Image(type='filepath'),
|
191 |
# "image", title=title, description=description,
|
192 |
# examples=examples)
|
|
|
14 |
# WEIGHTS = './weights/segmenter.pth
|
15 |
WEIGHTS = './weights/segmenter_nusc.pth'
|
16 |
FULL = True
|
17 |
+
ALPHA = 0.5
|
18 |
|
19 |
|
20 |
+
def blend_images(bg, fg, alpha=ALPHA):
|
21 |
fg = fg.convert('RGBA')
|
22 |
bg = bg.convert('RGBA')
|
23 |
blended = Image.blend(bg, fg, alpha=alpha)
|
|
|
136 |
model, window_size, window_stride, im_size = create_model()
|
137 |
|
138 |
|
139 |
+
def get_transformations(input_img):
|
140 |
trans_list = [transforms.ToTensor()]
|
141 |
|
142 |
+
shorter_input_size = min(input_img.size)
|
143 |
+
|
144 |
+
if im_size != 1024 or shorter_input_size < im_size:
|
145 |
trans_list.append(transforms.Resize(im_size))
|
146 |
|
147 |
trans_list.append(transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
|
|
|
151 |
|
152 |
def predict(input_img, cs_mapping):
|
153 |
input_img_pil = Image.open(input_img)
|
154 |
+
transform = get_transformations(input_img)
|
155 |
input_img = transform(input_img_pil)
|
156 |
input_img = torch.unsqueeze(input_img, 0)
|
157 |
|
|
|
189 |
|
190 |
iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'), gr.inputs.Checkbox(label="Cityscapes mapping")],
|
191 |
"image", title=title, description=description,
|
192 |
+
examples=examples, allow_screenshot=True)
|
193 |
# iface = gr.Interface(predict, gr.inputs.Image(type='filepath'),
|
194 |
# "image", title=title, description=description,
|
195 |
# examples=examples)
|