vobecant
commited on
Commit
·
621a3be
1
Parent(s):
ad1f0d8
Initial commit.
Browse files
app.py
CHANGED
@@ -182,14 +182,14 @@ def predict(input_img, cs_mapping):
|
|
182 |
title = "Drive&Segment"
|
183 |
description = 'Gradio Demo accompanying paper "Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation"\nBecause of the CPU-only inference, it might take up to 20s for large images.\nRight now, I use the Segmenter model trained on nuScenes and with 256x256 patches (for the sake of speed).'
|
184 |
# article = "<p style='text-align: center'><a href='TODO' target='_blank'>Project Page</a> | <a href='codelink' target='_blank'>Github</a></p>"
|
185 |
-
examples = [['examples/img5.jpeg',
|
186 |
-
['examples/img1.jpg',
|
187 |
|
188 |
# predict(examples[0])
|
189 |
|
190 |
iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'), gr.inputs.Checkbox(label="Cityscapes mapping")],
|
191 |
"image", title=title, description=description,
|
192 |
-
examples=examples
|
193 |
# iface = gr.Interface(predict, gr.inputs.Image(type='filepath'),
|
194 |
# "image", title=title, description=description,
|
195 |
# examples=examples)
|
|
|
182 |
title = "Drive&Segment"
|
183 |
description = 'Gradio Demo accompanying paper "Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation"\nBecause of the CPU-only inference, it might take up to 20s for large images.\nRight now, I use the Segmenter model trained on nuScenes and with 256x256 patches (for the sake of speed).'
|
184 |
# article = "<p style='text-align: center'><a href='TODO' target='_blank'>Project Page</a> | <a href='codelink' target='_blank'>Github</a></p>"
|
185 |
+
examples = [['examples/img5.jpeg', False], ['examples/100.jpeg', False], ['examples/39076.jpeg', False],
|
186 |
+
['examples/img1.jpg', False]]
|
187 |
|
188 |
# predict(examples[0])
|
189 |
|
190 |
iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'), gr.inputs.Checkbox(label="Cityscapes mapping")],
|
191 |
"image", title=title, description=description,
|
192 |
+
examples=examples)
|
193 |
# iface = gr.Interface(predict, gr.inputs.Image(type='filepath'),
|
194 |
# "image", title=title, description=description,
|
195 |
# examples=examples)
|