vobecant commited on
Commit
deeb0e8
·
1 Parent(s): bccc9c2

Initial commit.

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -182,17 +182,18 @@ def predict(input_img, cs_mapping):
182
  title = "Drive&Segment"
183
  description = 'Gradio Demo accompanying paper "Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation"\nBecause of the CPU-only inference, it might take up to 20s for large images.\nRight now, I use the Segmenter model trained on nuScenes and with 256x256 patches (for the sake of speed).'
184
  # article = "<p style='text-align: center'><a href='TODO' target='_blank'>Project Page</a> | <a href='codelink' target='_blank'>Github</a></p>"
185
- examples = [['examples/img5.jpeg', False], ['examples/100.jpeg', False], ['examples/39076.jpeg', False],
186
- ['examples/img1.jpg', False], ['examples/snow1.jpg',False]]
187
 
188
  # predict(examples[0])
189
 
190
- iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'), gr.inputs.Checkbox(label="Cityscapes mapping")],
191
  "image", title=title, description=description,
 
 
192
  examples=examples)
193
  # iface = gr.Interface(predict, gr.inputs.Image(type='filepath'),
194
  # "image", title=title, description=description,
195
  # examples=examples)
196
 
197
  # iface.launch(show_error=True, share=True)
198
- iface.launch(show_error=True)
 
182
  title = "Drive&Segment"
183
  description = 'Gradio Demo accompanying paper "Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation"\nBecause of the CPU-only inference, it might take up to 20s for large images.\nRight now, I use the Segmenter model trained on nuScenes and with 256x256 patches (for the sake of speed).'
184
  # article = "<p style='text-align: center'><a href='TODO' target='_blank'>Project Page</a> | <a href='codelink' target='_blank'>Github</a></p>"
185
+ examples = ['examples/img5.jpeg', 'examples/100.jpeg', 'examples/39076.jpeg', 'examples/img1.jpg', 'examples/snow1.jpg']
 
186
 
187
  # predict(examples[0])
188
 
189
+ iface = gr.Interface(predict, gr.inputs.Image(type='filepath'),
190
  "image", title=title, description=description,
191
+ outputs=[gr.outputs.Image(label="Pseudo segmentation", type="pil"),
192
+ gr.outputs.Image(label="Mapping to Cityscapes", type="pil")],
193
  examples=examples)
194
  # iface = gr.Interface(predict, gr.inputs.Image(type='filepath'),
195
  # "image", title=title, description=description,
196
  # examples=examples)
197
 
198
  # iface.launch(show_error=True, share=True)
199
+ iface.launch(enable_queue=True, cache_examples=True)