import math # import segm.utils.torch as ptu # from segm.engine import seg2rgb from collections import namedtuple import numpy as np import torch.nn as nn import torch.nn.functional as F from timm.models.layers import trunc_normal_ import torch CityscapesClass = namedtuple('CityscapesClass', ['name', 'id', 'train_id', 'category', 'category_id', 'has_instances', 'ignore_in_eval', 'color']) classes = [ CityscapesClass('unlabeled', 0, 255, 'void', 0, False, True, (0, 0, 0)), CityscapesClass('ego vehicle', 1, 255, 'void', 0, False, True, (0, 0, 0)), CityscapesClass('rectification border', 2, 255, 'void', 0, False, True, (0, 0, 0)), CityscapesClass('out of roi', 3, 255, 'void', 0, False, True, (0, 0, 0)), CityscapesClass('static', 4, 255, 'void', 0, False, True, (0, 0, 0)), CityscapesClass('dynamic', 5, 255, 'void', 0, False, True, (111, 74, 0)), CityscapesClass('ground', 6, 255, 'void', 0, False, True, (81, 0, 81)), CityscapesClass('road', 7, 0, 'flat', 1, False, False, (128, 64, 128)), CityscapesClass('sidewalk', 8, 1, 'flat', 1, False, False, (244, 35, 232)), CityscapesClass('parking', 9, 255, 'flat', 1, False, True, (250, 170, 160)), CityscapesClass('rail track', 10, 255, 'flat', 1, False, True, (230, 150, 140)), CityscapesClass('building', 11, 2, 'construction', 2, False, False, (70, 70, 70)), CityscapesClass('wall', 12, 3, 'construction', 2, False, False, (102, 102, 156)), CityscapesClass('fence', 13, 4, 'construction', 2, False, False, (190, 153, 153)), CityscapesClass('guard rail', 14, 255, 'construction', 2, False, True, (180, 165, 180)), CityscapesClass('bridge', 15, 255, 'construction', 2, False, True, (150, 100, 100)), CityscapesClass('tunnel', 16, 255, 'construction', 2, False, True, (150, 120, 90)), CityscapesClass('pole', 17, 5, 'object', 3, False, False, (153, 153, 153)), CityscapesClass('polegroup', 18, 255, 'object', 3, False, True, (153, 153, 153)), CityscapesClass('traffic light', 19, 6, 'object', 3, False, False, (250, 170, 30)), CityscapesClass('traffic sign', 20, 7, 'object', 3, False, False, (220, 220, 0)), CityscapesClass('vegetation', 21, 8, 'nature', 4, False, False, (107, 142, 35)), CityscapesClass('terrain', 22, 9, 'nature', 4, False, False, (152, 251, 152)), CityscapesClass('sky', 23, 10, 'sky', 5, False, False, (70, 130, 180)), CityscapesClass('person', 24, 11, 'human', 6, True, False, (220, 20, 60)), CityscapesClass('rider', 25, 12, 'human', 6, True, False, (255, 0, 0)), CityscapesClass('car', 26, 13, 'vehicle', 7, True, False, (0, 0, 142)), CityscapesClass('truck', 27, 14, 'vehicle', 7, True, False, (0, 0, 70)), CityscapesClass('bus', 28, 15, 'vehicle', 7, True, False, (0, 60, 100)), CityscapesClass('caravan', 29, 255, 'vehicle', 7, True, True, (0, 0, 90)), CityscapesClass('trailer', 30, 255, 'vehicle', 7, True, True, (0, 0, 110)), CityscapesClass('train', 31, 16, 'vehicle', 7, True, False, (0, 80, 100)), CityscapesClass('motorcycle', 32, 17, 'vehicle', 7, True, False, (0, 0, 230)), CityscapesClass('bicycle', 33, 18, 'vehicle', 7, True, False, (119, 11, 32)), CityscapesClass('license plate', -1, -1, 'vehicle', 7, False, True, (0, 0, 142)), ] cityscapes_id_to_trainID = {cls.id: cls.train_id for cls in classes} cityscapes_trainID_to_testID = {cls.train_id: cls.id for cls in classes} cityscapes_trainID_to_color = {cls.train_id: cls.color for cls in classes} cityscapes_trainID_to_name = {cls.train_id: cls.name for cls in classes} cityscapes_trainID_to_color[255] = (0, 0, 0) cityscapes_trainID_to_name = {cls.train_id: cls.name for cls in classes} cityscapes_trainID_to_name[255] = 'ignore' cityscapes_trainID_to_name[19] = 'ignore' def map2cs(seg): while len(seg.shape) > 2: seg = seg[0] colors = cityscapes_trainID_to_color # assert False, 'set ignore_idx color to black, make sure that it is not in colors' rgb = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) for l in np.unique(seg): rgb[seg == l, :] = colors[l] return rgb def get_colors(num_colors): from PIL import ImageColor import matplotlib hex_colors = [ # "#000000", # keep the black reserved "#FFFF00", "#1CE6FF", "#FF34FF", "#FF4A46", "#008941", "#006FA6", "#A30059", "#FFDBE5", "#7A4900", "#0000A6", "#63FFAC", "#B79762", "#004D43", "#8FB0FF", "#997D87", "#5A0007", "#809693", "#FEFFE6", "#1B4400", "#4FC601", "#3B5DFF", "#4A3B53", "#FF2F80", "#61615A", "#BA0900", "#6B7900", "#00C2A0", "#FFAA92", "#FF90C9", "#B903AA", "#D16100", "#DDEFFF", "#000035", "#7B4F4B", "#A1C299", "#300018", "#0AA6D8", "#013349", "#00846F", "#372101", "#FFB500", "#C2FFED", "#A079BF", "#CC0744", "#C0B9B2", "#C2FF99", "#001E09", "#00489C", "#6F0062", "#0CBD66", "#EEC3FF", "#456D75", "#B77B68", "#7A87A1", "#788D66", "#885578", "#FAD09F", "#FF8A9A", "#D157A0", "#BEC459", "#456648", "#0086ED", "#886F4C", "#34362D", "#B4A8BD", "#00A6AA", "#452C2C", "#636375", "#A3C8C9", "#FF913F", "#938A81", "#575329", "#00FECF", "#B05B6F", "#8CD0FF", "#3B9700", "#04F757", "#C8A1A1", "#1E6E00", "#7900D7", "#A77500", "#6367A9", "#A05837", "#6B002C", "#772600", "#D790FF", "#9B9700", "#549E79", "#FFF69F", "#201625", "#72418F", "#BC23FF", "#99ADC0", "#3A2465", "#922329", "#5B4534", "#FDE8DC", "#404E55", "#0089A3", "#CB7E98", "#A4E804", "#324E72", "#6A3A4C", "#83AB58", "#001C1E", "#D1F7CE", "#004B28", "#C8D0F6", "#A3A489", "#806C66", "#222800", "#BF5650", "#E83000", "#66796D", "#DA007C", "#FF1A59", "#8ADBB4", "#1E0200", "#5B4E51", "#C895C5", "#320033", "#FF6832", "#66E1D3", "#CFCDAC", "#D0AC94", "#7ED379", "#012C58", ] hex_colors_mlib = list(matplotlib.colors.cnames.values()) for hcm in hex_colors_mlib: if hcm not in hex_colors: hex_colors.append(hcm) colors = [ImageColor.getrgb(hex) for hex in hex_colors] return colors[:num_colors] def colorize_one(seg, ignore=None, colors=None, ncolors=32): unq = np.unique(seg) if ncolors is not None: ncolors = max(ncolors, max(unq)) else: ncolors = max(unq) colors = get_colors(ncolors) if colors is None else colors h, w = seg.shape c = 3 rgb = np.zeros((h, w, c), dtype=np.uint8) for l in unq: if ignore is not None and l == ignore: continue try: rgb[seg == l, :] = colors[l] except: raise Exception(l) return rgb def init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def resize_pos_embed(posemb, grid_old_shape, grid_new_shape, num_extra_tokens): # Rescale the grid of position embeddings when loading from state_dict. Adapted from # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 posemb_tok, posemb_grid = ( posemb[:, :num_extra_tokens], posemb[0, num_extra_tokens:], ) if grid_old_shape is None: gs_old_h = int(math.sqrt(len(posemb_grid))) gs_old_w = gs_old_h else: gs_old_h, gs_old_w = grid_old_shape gs_h, gs_w = grid_new_shape posemb_grid = posemb_grid.reshape(1, gs_old_h, gs_old_w, -1).permute(0, 3, 1, 2) posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear") posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb def checkpoint_filter_fn(state_dict, model): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} if "model" in state_dict: # For deit models state_dict = state_dict["model"] num_extra_tokens = 1 + ("dist_token" in state_dict.keys()) patch_size = model.patch_size image_size = model.patch_embed.image_size for k, v in state_dict.items(): if k == "pos_embed" and v.shape != model.pos_embed.shape: # To resize pos embedding when using model at different size from pretrained weights v = resize_pos_embed( v, None, (image_size[0] // patch_size, image_size[1] // patch_size), num_extra_tokens, ) out_dict[k] = v return out_dict def padding(im, patch_size, fill_value=0): # make the image sizes divisible by patch_size H, W = im.size(2), im.size(3) pad_h, pad_w = 0, 0 if H % patch_size > 0: pad_h = patch_size - (H % patch_size) if W % patch_size > 0: pad_w = patch_size - (W % patch_size) im_padded = im if pad_h > 0 or pad_w > 0: im_padded = F.pad(im, (0, pad_w, 0, pad_h), value=fill_value) return im_padded def unpadding(y, target_size): H, W = target_size H_pad, W_pad = y.size(2), y.size(3) # crop predictions on extra pixels coming from padding extra_h = H_pad - H extra_w = W_pad - W if extra_h > 0: y = y[:, :, :-extra_h] if extra_w > 0: y = y[:, :, :, :-extra_w] return y def resize(im, smaller_size): h, w = im.shape[2:] if h < w: ratio = w / h h_res, w_res = smaller_size, ratio * smaller_size else: ratio = h / w h_res, w_res = ratio * smaller_size, smaller_size if min(h, w) < smaller_size: im_res = F.interpolate(im, (int(h_res), int(w_res)), mode="bilinear") else: im_res = im return im_res def sliding_window(im, flip, window_size, window_stride, channels_first=True): if channels_first: B, C, H, W = im.shape else: B, H, W, C = im.shape ws = window_size windows = {"crop": [], "anchors": []} h_anchors = torch.arange(0, H, window_stride) w_anchors = torch.arange(0, W, window_stride) h_anchors = [h.item() for h in h_anchors if h < H - ws] + [H - ws] w_anchors = [w.item() for w in w_anchors if w < W - ws] + [W - ws] for ha in h_anchors: for wa in w_anchors: if channels_first: window = im[:, :, ha: ha + ws, wa: wa + ws] else: window = im[:, ha: ha + ws, wa: wa + ws] windows["crop"].append(window) windows["anchors"].append((ha, wa)) windows["flip"] = flip windows["shape"] = (H, W) return windows def merge_windows(windows, window_size, ori_shape, no_softmax=False, no_upsample=False, patch_size=None): ws = window_size im_windows = windows["seg_maps"] anchors = windows["anchors"] C = im_windows[0].shape[0] H, W = windows["shape"] flip = windows["flip"] if no_upsample: H, W = H // patch_size, W // patch_size logit = torch.zeros((C, H, W), device=im_windows.device) count = torch.zeros((1, H, W), device=im_windows.device) for window, (ha, wa) in zip(im_windows, anchors): if no_upsample: ha = ha // patch_size wa = wa // patch_size logit[:, ha: ha + ws, wa: wa + ws] += window count[:, ha: ha + ws, wa: wa + ws] += 1 logit /= count # print('Interpolate {} -> {}'.format(logit.shape, ori_shape)) if not no_upsample: logit = F.interpolate( logit.unsqueeze(0), ori_shape, mode="bilinear", )[0] if flip: logit = torch.flip(logit, (2,)) if not no_softmax: # print('Softmax in merge_windows') result = F.softmax(logit, 0) else: # print('No softmax in merge_windows') result = logit return result def debug_windows(windows, debug_file): pass def inference_picie( model, classifier, metric_test, ims, ori_shape, window_size, window_stride, batch_size, decoder_features=False, no_upsample=False, debug_file=None, im_rgb=None, channel_first=False ): try: C = model.n_cls except: C = classifier.module.bias.shape[0] # seg_maps = [] # for im, im_metas in zip(ims, ims_metas): for im in ims: im = im.to('cuda') if len(im.shape) == 3: im = im.unsqueeze(0) flip = False # im_metas["flip"] windows = sliding_window(im, flip, window_size, window_stride) crops = torch.stack(windows.pop("crop"))[:, 0] num_crops = len(crops) WB = batch_size if batch_size > 0 else num_crops if no_upsample: window_size = window_size // model.patch_size seg_maps = torch.zeros((num_crops, C, window_size, window_size), device=im.device) with torch.no_grad(): for i in range(0, num_crops, WB): # try: feats = model.forward(crops[i: i + WB]) if metric_test == 'cosine': feats = F.normalize(feats, dim=1, p=2) probs = classifier(feats) probs = F.interpolate(probs, crops[i: i + WB].shape[-2:], mode='bilinear', align_corners=False) seg_maps[i: i + WB] = probs windows["seg_maps"] = seg_maps im_seg_map = merge_windows(windows, window_size, ori_shape, no_softmax=decoder_features, no_upsample=no_upsample, patch_size=None) seg_map = im_seg_map if no_upsample and not decoder_features: pass else: seg_map = F.interpolate( seg_map.unsqueeze(0), ori_shape, mode="bilinear", ) return seg_map def inference( model, ims, ori_shape, window_size, window_stride, batch_size, decoder_features=False, encoder_features=False, save2cpu=False, no_upsample=False, debug_file=None, im_rgb=None, channel_first=False ): C = model.n_cls patch_size = model.patch_size # seg_maps = [] # for im, im_metas in zip(ims, ims_metas): for im in ims: im = im.to('cuda') if len(im.shape) == 3: im = im.unsqueeze(0) # im = resize(im, window_size) flip = False # im_metas["flip"] # print(im) windows = sliding_window(im, flip, window_size, window_stride) # print(windows) crops = torch.stack(windows.pop("crop"))[:, 0] num_crops = len(crops) WB = batch_size if batch_size > 0 else num_crops if no_upsample: window_size = window_size // model.patch_size # print('Change variable window_size to {}'.format(window_size)) seg_maps = torch.zeros((num_crops, C, window_size, window_size), device=im.device) # print('Allocated segm_maps: {}, device: {}'.format(seg_maps.shape, seg_maps.device)) with torch.no_grad(): for i in range(0, num_crops, WB): # try: seg_maps[i: i + WB] = model.forward(crops[i: i + WB], decoder_features=decoder_features, encoder_features=encoder_features, no_upsample=no_upsample) # except: # print('Input of shape: {}'.format(crops[i:i + WB].shape)) # assert False, "End after error." # torch.cuda.empty_cache() windows["seg_maps"] = seg_maps im_seg_map = merge_windows(windows, window_size, ori_shape, no_softmax=decoder_features, no_upsample=no_upsample, patch_size=model.patch_size) seg_map = im_seg_map if no_upsample and not decoder_features: pass else: seg_map = F.interpolate( seg_map.unsqueeze(0), ori_shape, mode="bilinear", ) # seg_maps.append(seg_map) # print('Done one inference.') # seg_maps = torch.cat(seg_maps, dim=0) return seg_map def inference_features( model, ims, ori_shape, window_size, window_stride, batch_size, decoder_features=False, encoder_features=False, save2cpu=False, no_upsample=True, encoder_only=False ): C = model.n_cls if decoder_features else model.encoder.d_model patch_size = model.patch_size # seg_maps = [] # for im, im_metas in zip(ims, ims_metas): for im in ims: im = im.to('cuda') if len(im.shape) == 3: im = im.unsqueeze(0) # im = resize(im, window_size) flip = False # im_metas["flip"] # print(im) windows = sliding_window(im, flip, window_size, window_stride) # print(windows) crops = torch.stack(windows.pop("crop"))[:, 0] num_crops = len(crops) WB = batch_size if batch_size > 0 else num_crops if no_upsample: window_size = window_size // model.patch_size # print('Change variable window_size to {}'.format(window_size)) enc_maps = torch.zeros((num_crops, C, window_size, window_size), device=im.device) if decoder_features: dec_maps = torch.zeros((num_crops, C, window_size, window_size), device=im.device) # print('Allocated segm_maps: {}, device: {}'.format(seg_maps.shape, seg_maps.device)) with torch.no_grad(): for i in range(0, num_crops, WB): enc_fts = model.forward(crops[i: i + WB], decoder_features=decoder_features, encoder_features=True, no_upsample=no_upsample, encoder_only=encoder_only) if decoder_features: enc_fts, dec_fts = enc_fts dec_maps[i: i + WB] = dec_fts elif isinstance(enc_fts, tuple): enc_fts = enc_fts[0] enc_maps[i: i + WB] = enc_fts windows["seg_maps"] = enc_maps im_enc_map = merge_windows(windows, window_size, ori_shape, no_softmax=decoder_features, no_upsample=no_upsample, patch_size=model.patch_size) if decoder_features: windows["seg_maps"] = dec_maps im_dec_map = merge_windows(windows, window_size, ori_shape, no_softmax=decoder_features, no_upsample=no_upsample, patch_size=model.patch_size) if no_upsample: pass else: im_enc_map = F.interpolate( im_enc_map.unsqueeze(0), ori_shape, mode="bilinear", ) if decoder_features: im_dec_map = F.interpolate( im_dec_map.unsqueeze(0), ori_shape, mode="bilinear", ) im_enc_map = im_enc_map.cpu().numpy() if decoder_features: im_dec_map = im_dec_map.cpu().numpy() return im_enc_map, im_dec_map return im_enc_map def inference_conv( model, ims, ims_metas, ori_shape ): assert len(ims) == 1 for im, im_metas in zip(ims, ims_metas): im = im.to(ptu.device) if len(im.shape) < 4: im = im.unsqueeze(0) logits = model(im) if ori_shape[:2] != logits.shape[-2:]: # resize logits = F.interpolate( logits, ori_shape[-2:], mode="bilinear", ) # 3) applies softmax result = F.softmax(logits.squeeze(), 0) # print(result.shape) return result def num_params(model): model_parameters = filter(lambda p: p.requires_grad, model.parameters()) n_params = sum([torch.prod(torch.tensor(p.size())) for p in model_parameters]) if not type(n_params) == int: n_params = n_params.item() return n_params