voxxer commited on
Commit
abeeaaa
·
1 Parent(s): bc4130b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -10,7 +10,7 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
10
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
 
12
  # load speech translation checkpoint
13
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-medium", device=device)
14
 
15
  # load text-to-speech checkpoint and speaker embeddings
16
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
@@ -21,11 +21,13 @@ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(devic
21
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
22
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
23
 
 
 
24
 
25
  def translate(audio):
26
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "Russian"})
27
- return outputs["text"]
28
-
29
 
30
  def synthesise(text):
31
  inputs = processor(text=text, return_tensors="pt")
 
10
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
 
12
  # load speech translation checkpoint
13
+ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
14
 
15
  # load text-to-speech checkpoint and speaker embeddings
16
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
 
21
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
22
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
23
 
24
+ # load text en-ru translation model
25
+ translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru", device=device)
26
 
27
  def translate(audio):
28
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe"})
29
+ translated_text = translator(outputs["text"])
30
+ return translated_text[0]['translation_text']
31
 
32
  def synthesise(text):
33
  inputs = processor(text=text, return_tensors="pt")