Spaces:
Runtime error
Runtime error
Changed to Russian language
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
|
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
@@ -14,7 +15,7 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
@@ -22,7 +23,7 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
|
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
@@ -31,9 +32,22 @@ def synthesise(text):
|
|
31 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
32 |
return speech.cpu()
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
36 |
translated_text = translate(audio)
|
|
|
37 |
synthesised_speech = synthesise(translated_text)
|
38 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
39 |
return 16000, synthesised_speech
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
+
from transliterate import translit
|
6 |
|
7 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
8 |
|
|
|
15 |
# load text-to-speech checkpoint and speaker embeddings
|
16 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
17 |
|
18 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("voxxer/speecht5_finetuned_commonvoice_ru_translit").to(device)
|
19 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
20 |
|
21 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
|
23 |
|
24 |
|
25 |
def translate(audio):
|
26 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "ru"})
|
27 |
return outputs["text"]
|
28 |
|
29 |
|
|
|
32 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
33 |
return speech.cpu()
|
34 |
|
35 |
+
def cleanup_text(inputs):
|
36 |
+
replacements = [('«', '"'),
|
37 |
+
('»', '"'),
|
38 |
+
('‑', '-'),
|
39 |
+
('–', '-'),
|
40 |
+
('−', '-'),
|
41 |
+
('…', '...'),
|
42 |
+
]
|
43 |
+
for src, dst in replacements:
|
44 |
+
inputs = translit(inputs.replace(src, dst).lower(), 'ru', reversed=True)
|
45 |
+
return inputs
|
46 |
+
|
47 |
|
48 |
def speech_to_speech_translation(audio):
|
49 |
translated_text = translate(audio)
|
50 |
+
translated_text = cleanup_text(translated_text)
|
51 |
synthesised_speech = synthesise(translated_text)
|
52 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
53 |
return 16000, synthesised_speech
|