vr18 commited on
Commit
dce74f9
Β·
1 Parent(s): 40638fd

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -4
app.py CHANGED
@@ -7,6 +7,7 @@ from langchain.vectorstores import Chroma
7
  import openai
8
  import streamlit as st
9
  import gradio as gr
 
10
 
11
  openai.api_key = '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'
12
 
@@ -73,12 +74,17 @@ def save_in_DB(splitted_text):
73
  return db
74
 
75
 
76
- def query(query_text):
77
  st.title('RAG system')
78
 
79
  # query_text = st.text_input("Enter your question", "Cynthia W. Harris is a citizen of which state?", key="question")
80
- docs = db.similarity_search(query_text)
81
  print("len(docs)", len(docs))
 
 
 
 
 
82
 
83
  # Store the first 10 results as context
84
  context = '\n\n'.join([doc.page_content for doc in docs[:5]])
@@ -102,7 +108,7 @@ def query(query_text):
102
  # Return the generated answer
103
  st.subheader("Answer:")
104
  st.write(predicted)
105
- return predicted, context
106
 
107
 
108
 
@@ -116,7 +122,14 @@ def run():
116
  db = save_in_DB(splitted_text)
117
  print("type db", type(db))
118
 
119
- demo = gr.Interface(fn=query, inputs="text", outputs=["text", "text"])
 
 
 
 
 
 
 
120
 
121
  demo.launch()
122
  # query(db)
 
7
  import openai
8
  import streamlit as st
9
  import gradio as gr
10
+ from gradio.components import Textbox, Slider
11
 
12
  openai.api_key = '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'
13
 
 
74
  return db
75
 
76
 
77
+ def query(query_text, num_docs):
78
  st.title('RAG system')
79
 
80
  # query_text = st.text_input("Enter your question", "Cynthia W. Harris is a citizen of which state?", key="question")
81
+ docs = db.similarity_search(query_text, k=num_docs)
82
  print("len(docs)", len(docs))
83
+ # print each docs .page_content with klar abgrenzen
84
+ for doc in docs:
85
+ print("doc", doc.page_content)
86
+ print()
87
+ print()
88
 
89
  # Store the first 10 results as context
90
  context = '\n\n'.join([doc.page_content for doc in docs[:5]])
 
108
  # Return the generated answer
109
  st.subheader("Answer:")
110
  st.write(predicted)
111
+ return predicted
112
 
113
 
114
 
 
122
  db = save_in_DB(splitted_text)
123
  print("type db", type(db))
124
 
125
+ demo = gr.Interface(
126
+ fn=query,
127
+ inputs=[
128
+ Textbox(lines=1, placeholder="Type your question here...", label="Question"),
129
+ Slider(minimum=1, maximum=20, default=4, step=1, label="Number of Documents in Context")
130
+ ],
131
+ outputs="text"
132
+ )
133
 
134
  demo.launch()
135
  # query(db)