Delete src/app.py
Browse files- src/app.py +0 -122
src/app.py
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
from PyPDF2 import PdfReader
|
2 |
-
# import pdfplumber
|
3 |
-
from tqdm import tqdm
|
4 |
-
import tiktoken
|
5 |
-
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
6 |
-
from langchain.vectorstores import Chroma
|
7 |
-
import openai
|
8 |
-
import streamlit as st
|
9 |
-
import gradio as gr
|
10 |
-
|
11 |
-
openai.api_key = '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'
|
12 |
-
|
13 |
-
# write some python constants for file name, paragraph length, overlapping length:
|
14 |
-
file_path = "data/Hair-Relaxer-Master-Complaint-1.pdf"
|
15 |
-
paragraph_length = 100
|
16 |
-
overlapping_length = 50
|
17 |
-
db = None
|
18 |
-
|
19 |
-
from PyPDF2 import PdfReader
|
20 |
-
|
21 |
-
|
22 |
-
def load_pdf(file_path):
|
23 |
-
print("load pdf")
|
24 |
-
reader = PdfReader(file_path)
|
25 |
-
# concatenate all pages
|
26 |
-
text = ''
|
27 |
-
for page in tqdm(reader.pages):
|
28 |
-
text += page.extract_text()
|
29 |
-
return text
|
30 |
-
|
31 |
-
|
32 |
-
def extract_text_with_format(pdf_path):
|
33 |
-
with pdfplumber.open(pdf_path) as pdf:
|
34 |
-
text = ''
|
35 |
-
for page in tqdm(pdf.pages):
|
36 |
-
text += page.extract_text()
|
37 |
-
return text
|
38 |
-
|
39 |
-
|
40 |
-
from collections import deque
|
41 |
-
|
42 |
-
|
43 |
-
def split_text(text, paragraph_length, overlapping_length):
|
44 |
-
enc = tiktoken.get_encoding("cl100k_base")
|
45 |
-
enc = tiktoken.encoding_for_model("gpt-4")
|
46 |
-
|
47 |
-
def get_len(tokens):
|
48 |
-
return len(tokens)
|
49 |
-
|
50 |
-
def tokens_to_text(tokens):
|
51 |
-
return enc.decode(tokens)
|
52 |
-
|
53 |
-
# split text so each item is max paragraph length and overlap is overlapping length
|
54 |
-
splitted_text = []
|
55 |
-
tokens = enc.encode(text)
|
56 |
-
|
57 |
-
i = 0
|
58 |
-
while i < len(tokens):
|
59 |
-
start = max(i - overlapping_length, 0)
|
60 |
-
end = i + paragraph_length
|
61 |
-
splitted_text.append(tokens_to_text(tokens[start:end]))
|
62 |
-
i += paragraph_length
|
63 |
-
|
64 |
-
return splitted_text
|
65 |
-
|
66 |
-
|
67 |
-
def save_in_DB(splitted_text):
|
68 |
-
# Create the open-source embedding function
|
69 |
-
embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
70 |
-
db = Chroma.from_texts(splitted_text, embedding_function)
|
71 |
-
print("Data saved successfully!")
|
72 |
-
print("type db", type(db))
|
73 |
-
return db
|
74 |
-
|
75 |
-
|
76 |
-
def query(query_text):
|
77 |
-
st.title('RAG system')
|
78 |
-
|
79 |
-
# query_text = st.text_input("Enter your question", "Cynthia W. Harris is a citizen of which state?", key="question")
|
80 |
-
docs = db.similarity_search(query_text)
|
81 |
-
print("len(docs)", len(docs))
|
82 |
-
|
83 |
-
# Store the first 10 results as context
|
84 |
-
context = '\n\n'.join([doc.page_content for doc in docs[:5]])
|
85 |
-
# show context in streamlit with subheader
|
86 |
-
"""st.subheader("Context:")
|
87 |
-
st.write(context)"""
|
88 |
-
instruct = f"The following is a context from various documents:\n{context}\n\nQuestion: {query_text}\nAnswer:"
|
89 |
-
|
90 |
-
# Make an OpenAI request with the given context and query
|
91 |
-
completion = openai.ChatCompletion.create(
|
92 |
-
model="gpt-3.5-turbo", # or any other model you're targeting
|
93 |
-
messages=[
|
94 |
-
{"role": "user", "content": instruct}
|
95 |
-
],
|
96 |
-
max_tokens=150
|
97 |
-
)
|
98 |
-
|
99 |
-
# Extract the generated answer
|
100 |
-
predicted = completion.choices[0].message["content"]
|
101 |
-
|
102 |
-
# Return the generated answer
|
103 |
-
st.subheader("Answer:")
|
104 |
-
st.write(predicted)
|
105 |
-
return predicted, context
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
def run():
|
110 |
-
global db
|
111 |
-
print("run app")
|
112 |
-
text = load_pdf(file_path)
|
113 |
-
# text = extract_text_with_format(file_path)
|
114 |
-
splitted_text = split_text(text, paragraph_length, overlapping_length)
|
115 |
-
print("num splitted text", len(splitted_text))
|
116 |
-
db = save_in_DB(splitted_text)
|
117 |
-
print("type db", type(db))
|
118 |
-
|
119 |
-
demo = gr.Interface(fn=query, inputs="text", outputs=["text", "text"])
|
120 |
-
|
121 |
-
demo.launch()
|
122 |
-
# query(db)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|