File size: 5,250 Bytes
6d51833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# -*- coding: utf-8 -*-
"""encoder.ipynb

Automatically generated.

Original file is located at:
    /home/macu/work/nbs/encoder.ipynb
"""

#default_exp encoder

#hide
%load_ext autoreload
%autoreload 2

#export
import pandas as pd
import numpy as np
from fastcore.all import *
from tsai.callback.MVP import *
from tsai.imports import *
from tsai.models.InceptionTimePlus import InceptionTimePlus
from tsai.models.explainability import get_acts_and_grads
from tsai.models.layers import *
from tsai.data.validation import combine_split_data

#hide
from tsai.all import *

#export 
class DCAE_torch(Module):
    def __init__(self, c_in, seq_len, delta, nfs=[64, 32, 12], kss=[10, 5, 5],
                 pool_szs=[2,2,3], output_fsz=10):
        """
        Create a Deep Convolutional Autoencoder for multivariate time series of `d` dimensions,
        sliced with a window size of `w`. The parameter `delta` sets the number of latent features that will be
        contained in the Dense layer of the network. The the number of features
        maps (filters), the filter size and the pool size can also be adjusted."
        """
        assert all_equal([len(x) for x in [nfs, kss, pool_szs]], np.repeat(len(nfs), 3)), \
            'nfs, kss, and pool_szs must have the same length'
        assert np.prod(pool_szs) == nfs[-1], \
            'The number of filters in the last conv layer must be equal to the product of pool sizes'
        assert seq_len % np.prod(pool_szs) == 0, \
            'The product of pool sizes must be a divisor of the window size'
        layers = []
        for i in range_of(kss):
            layers += [Conv1d(ni=nfs[i-1] if i>0 else c_in, nf=nfs[i], ks=kss[i]),
                       nn.MaxPool1d(kernel_size=pool_szs[i])]
        self.downsample = nn.Sequential(*layers)
        self.bottleneck = nn.Sequential(OrderedDict([
            ('flatten', nn.Flatten()),
            ('latent_in', nn.Linear(seq_len, delta)),
            ('latent_out', nn.Linear(delta, seq_len)),
            ('reshape', Reshape(nfs[-1], seq_len // np.prod(pool_szs)))
        ]))
        layers = []
        for i in reversed(range_of(kss)):
            layers += [Conv1d(ni=nfs[i+1] if i != (len(nfs)-1) else nfs[-1],
                              nf=nfs[i], ks=kss[i]),
                       nn.Upsample(scale_factor=pool_szs[i])]
        layers += [Conv1d(ni=nfs[0], nf=c_in, kernel_size=output_fsz)]
        self.upsample = nn.Sequential(*layers)

    def forward(self, x):
        x = self.downsample(x)
        x = self.bottleneck(x)
        x = self.upsample(x)
        return x

#hide
foo = torch.rand(3, 1, 48)
m = DCAE_torch(c_in=foo.shape[1], seq_len=foo.shape[2], delta=12)
m(foo).shape

#export
ENCODER_EMBS_MODULE_NAME = {
    InceptionTimePlus: 'backbone', # for mvp based models
    DCAE_torch: 'bottleneck.latent_in'
}

#export
def get_enc_embs(X, enc_learn, module=None, cpu=False, average_seq_dim=True, to_numpy=True):
    """
        Get the embeddings of X from an encoder, passed in `enc_learn as a fastai
        learner. By default, the embeddings are obtained from the last layer
        before the model head, although any layer can be passed to `model`.
        Input
        - `cpu`: Whether to do the model inference in cpu of gpu (GPU recommended)
        - `average_seq_dim`: Whether to aggregate the embeddings in the sequence dimensions
        - `to_numpy`: Whether to return the result as a numpy array (if false returns a tensor)
    """
    if cpu:
        print("--> Get enc embs CPU")
        enc_learn.dls.cpu()
        enc_learn.cpu()
    else:
        print("--> Use CUDA |Get enc embs GPU")
        enc_learn.dls.cuda()
        enc_learn.cuda()
        print("devices: ", enc_learn.dls.device, enc_learn.model.device)
        print("Use CUDA -->")
    if enc_learn.dls.bs == 0: enc_learn.dls.bs = 64
    print("--> Get enc embs bs: ", enc_learn.dls.bs)
    aux_dl = enc_learn.dls.valid.new_dl(X=X)
    aux_dl.bs = enc_learn.dls.bs if enc_learn.dls.bs>0 else 64
    module = nested_attr(enc_learn.model,
                         ENCODER_EMBS_MODULE_NAME[type(enc_learn.model)]) \
                if module is None else module
    embs = [get_acts_and_grads(model=enc_learn.model,
                               modules=module,
                               x=xb[0], cpu=cpu)[0] for xb in aux_dl]
    embs = to_concat(embs)
    if embs.ndim == 3 and average_seq_dim: embs = embs.mean(axis=2)
    if to_numpy: embs = embs.numpy() if cpu else embs.cpu().numpy()
    return embs

#hide
import wandb
from dvats.utils import *
wandb_api = wandb.Api()
enc_artifact = wandb_api.artifact('deepvats/mvp:latest')
enc_learner = enc_artifact.to_obj()
X = torch.rand(9, 1, 48)

#hide
#slow
#%%time
embs = get_enc_embs(X, enc_learner, cpu=True)
test_eq(embs.shape[0], X.shape[0])
embs.shape, embs.__class__

#hide
%%time
embs = get_enc_embs(X, enc_learner, cpu=False, to_numpy=False)
test_eq(embs.shape[0], X.shape[0])
embs.shape, embs.__class__, embs.device

#hide 
%%time
embs = get_enc_embs(X, enc_learner, cpu=False, to_numpy=True)
test_eq(embs.shape[0], X.shape[0])
embs.shape, embs.__class__

#hide

#from nbdev.export import notebook2script

#notebook2script()

#from tsai import nb2py
#nb2py
#beep(1)