# -*- coding: utf-8 -*- """encoder.ipynb Automatically generated. Original file is located at: /home/macu/work/nbs/encoder.ipynb """ #default_exp encoder #hide %load_ext autoreload %autoreload 2 #export import pandas as pd import numpy as np from fastcore.all import * from tsai.callback.MVP import * from tsai.imports import * from tsai.models.InceptionTimePlus import InceptionTimePlus from tsai.models.explainability import get_acts_and_grads from tsai.models.layers import * from tsai.data.validation import combine_split_data #hide from tsai.all import * #export class DCAE_torch(Module): def __init__(self, c_in, seq_len, delta, nfs=[64, 32, 12], kss=[10, 5, 5], pool_szs=[2,2,3], output_fsz=10): """ Create a Deep Convolutional Autoencoder for multivariate time series of `d` dimensions, sliced with a window size of `w`. The parameter `delta` sets the number of latent features that will be contained in the Dense layer of the network. The the number of features maps (filters), the filter size and the pool size can also be adjusted." """ assert all_equal([len(x) for x in [nfs, kss, pool_szs]], np.repeat(len(nfs), 3)), \ 'nfs, kss, and pool_szs must have the same length' assert np.prod(pool_szs) == nfs[-1], \ 'The number of filters in the last conv layer must be equal to the product of pool sizes' assert seq_len % np.prod(pool_szs) == 0, \ 'The product of pool sizes must be a divisor of the window size' layers = [] for i in range_of(kss): layers += [Conv1d(ni=nfs[i-1] if i>0 else c_in, nf=nfs[i], ks=kss[i]), nn.MaxPool1d(kernel_size=pool_szs[i])] self.downsample = nn.Sequential(*layers) self.bottleneck = nn.Sequential(OrderedDict([ ('flatten', nn.Flatten()), ('latent_in', nn.Linear(seq_len, delta)), ('latent_out', nn.Linear(delta, seq_len)), ('reshape', Reshape(nfs[-1], seq_len // np.prod(pool_szs))) ])) layers = [] for i in reversed(range_of(kss)): layers += [Conv1d(ni=nfs[i+1] if i != (len(nfs)-1) else nfs[-1], nf=nfs[i], ks=kss[i]), nn.Upsample(scale_factor=pool_szs[i])] layers += [Conv1d(ni=nfs[0], nf=c_in, kernel_size=output_fsz)] self.upsample = nn.Sequential(*layers) def forward(self, x): x = self.downsample(x) x = self.bottleneck(x) x = self.upsample(x) return x #hide foo = torch.rand(3, 1, 48) m = DCAE_torch(c_in=foo.shape[1], seq_len=foo.shape[2], delta=12) m(foo).shape #export ENCODER_EMBS_MODULE_NAME = { InceptionTimePlus: 'backbone', # for mvp based models DCAE_torch: 'bottleneck.latent_in' } #export def get_enc_embs(X, enc_learn, module=None, cpu=False, average_seq_dim=True, to_numpy=True): """ Get the embeddings of X from an encoder, passed in `enc_learn as a fastai learner. By default, the embeddings are obtained from the last layer before the model head, although any layer can be passed to `model`. Input - `cpu`: Whether to do the model inference in cpu of gpu (GPU recommended) - `average_seq_dim`: Whether to aggregate the embeddings in the sequence dimensions - `to_numpy`: Whether to return the result as a numpy array (if false returns a tensor) """ if cpu: print("--> Get enc embs CPU") enc_learn.dls.cpu() enc_learn.cpu() else: print("--> Use CUDA |Get enc embs GPU") enc_learn.dls.cuda() enc_learn.cuda() print("devices: ", enc_learn.dls.device, enc_learn.model.device) print("Use CUDA -->") if enc_learn.dls.bs == 0: enc_learn.dls.bs = 64 print("--> Get enc embs bs: ", enc_learn.dls.bs) aux_dl = enc_learn.dls.valid.new_dl(X=X) aux_dl.bs = enc_learn.dls.bs if enc_learn.dls.bs>0 else 64 module = nested_attr(enc_learn.model, ENCODER_EMBS_MODULE_NAME[type(enc_learn.model)]) \ if module is None else module embs = [get_acts_and_grads(model=enc_learn.model, modules=module, x=xb[0], cpu=cpu)[0] for xb in aux_dl] embs = to_concat(embs) if embs.ndim == 3 and average_seq_dim: embs = embs.mean(axis=2) if to_numpy: embs = embs.numpy() if cpu else embs.cpu().numpy() return embs #hide import wandb from dvats.utils import * wandb_api = wandb.Api() enc_artifact = wandb_api.artifact('deepvats/mvp:latest') enc_learner = enc_artifact.to_obj() X = torch.rand(9, 1, 48) #hide #slow #%%time embs = get_enc_embs(X, enc_learner, cpu=True) test_eq(embs.shape[0], X.shape[0]) embs.shape, embs.__class__ #hide %%time embs = get_enc_embs(X, enc_learner, cpu=False, to_numpy=False) test_eq(embs.shape[0], X.shape[0]) embs.shape, embs.__class__, embs.device #hide %%time embs = get_enc_embs(X, enc_learner, cpu=False, to_numpy=True) test_eq(embs.shape[0], X.shape[0]) embs.shape, embs.__class__ #hide #from nbdev.export import notebook2script #notebook2script() #from tsai import nb2py #nb2py #beep(1)