Spaces:
Sleeping
Sleeping
Víctor Sáez
commited on
Commit
·
cdb3339
1
Parent(s):
a7e9383
Adding error catching
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ from pathlib import Path
|
|
6 |
import transformers
|
7 |
import warnings
|
8 |
import traceback
|
|
|
9 |
|
10 |
warnings.filterwarnings("ignore", message=".*copying from a non-meta parameter.*")
|
11 |
|
@@ -14,9 +15,11 @@ current_model = None
|
|
14 |
current_processor = None
|
15 |
current_model_name = None
|
16 |
|
|
|
|
|
|
|
17 |
# Available models with better selection
|
18 |
available_models = {
|
19 |
-
# DETR Models
|
20 |
"DETR ResNet-50": "facebook/detr-resnet-50",
|
21 |
"DETR ResNet-101": "facebook/detr-resnet-101",
|
22 |
"DETR DC5": "facebook/detr-resnet-50-dc5",
|
@@ -26,18 +29,20 @@ available_models = {
|
|
26 |
|
27 |
def load_model(model_key):
|
28 |
"""Load model and processor based on selected model key"""
|
29 |
-
global current_model, current_processor, current_model_name
|
30 |
|
31 |
model_name = available_models[model_key]
|
32 |
|
33 |
# Only load if it's a different model
|
34 |
if current_model_name != model_name:
|
|
|
35 |
print(f"Loading model: {model_name}")
|
36 |
current_processor = DetrImageProcessor.from_pretrained(model_name)
|
37 |
current_model = DetrForObjectDetection.from_pretrained(model_name)
|
38 |
current_model_name = model_name
|
39 |
print(f"Model loaded: {model_name}")
|
40 |
print(f"Available labels: {list(current_model.config.id2label.values())}")
|
|
|
41 |
|
42 |
return current_model, current_processor
|
43 |
|
@@ -48,7 +53,7 @@ if not font_path.exists():
|
|
48 |
print(f"Font file {font_path} not found. Using default font.")
|
49 |
font = ImageFont.load_default()
|
50 |
else:
|
51 |
-
font = ImageFont.truetype(str(font_path), size=100)
|
52 |
|
53 |
# Set up translations for the app
|
54 |
translations = {
|
@@ -62,6 +67,8 @@ translations = {
|
|
62 |
"button": "Detect Objects",
|
63 |
"info_label": "Detection Info",
|
64 |
"error_label": "Error Messages",
|
|
|
|
|
65 |
"model_fast": "General Objects (fast)",
|
66 |
"model_precision": "General Objects (high precision)",
|
67 |
"model_small": "Small Objects/Details (slow)",
|
@@ -77,6 +84,8 @@ translations = {
|
|
77 |
"button": "Detectar objetos",
|
78 |
"info_label": "Información de detección",
|
79 |
"error_label": "Mensajes de error",
|
|
|
|
|
80 |
"model_fast": "Objetos generales (rápido)",
|
81 |
"model_precision": "Objetos generales (precisión alta)",
|
82 |
"model_small": "Objetos pequeños/detalles (lento)",
|
@@ -92,6 +101,8 @@ translations = {
|
|
92 |
"button": "Détecter les objets",
|
93 |
"info_label": "Information de détection",
|
94 |
"error_label": "Messages d'erreur",
|
|
|
|
|
95 |
"model_fast": "Objets généraux (rapide)",
|
96 |
"model_precision": "Objets généraux (haute précision)",
|
97 |
"model_small": "Petits objets/détails (lent)",
|
@@ -106,6 +117,9 @@ def t(language, key):
|
|
106 |
|
107 |
def get_translated_model_choices(language):
|
108 |
"""Get model choices translated to the selected language"""
|
|
|
|
|
|
|
109 |
model_mapping = {
|
110 |
"DETR ResNet-50": "model_fast",
|
111 |
"DETR ResNet-101": "model_precision",
|
@@ -119,9 +133,10 @@ def get_translated_model_choices(language):
|
|
119 |
translation_key = model_mapping[model_key]
|
120 |
translated_name = t(language, translation_key)
|
121 |
else:
|
122 |
-
translated_name = model_key
|
123 |
translated_choices.append(translated_name)
|
124 |
|
|
|
125 |
return translated_choices
|
126 |
|
127 |
|
@@ -160,7 +175,7 @@ def get_helsinki_model(language_label):
|
|
160 |
return f"Helsinki-NLP/opus-mt-en-{target}"
|
161 |
|
162 |
|
163 |
-
#
|
164 |
translation_cache = {}
|
165 |
|
166 |
|
@@ -189,26 +204,36 @@ def translate_label(language_label, label):
|
|
189 |
|
190 |
def detect_objects(image, language_selector, translated_model_selector, threshold):
|
191 |
"""Enhanced object detection with adjustable threshold and better info"""
|
|
|
|
|
192 |
try:
|
|
|
|
|
|
|
193 |
# Get the actual model key from the translated name
|
194 |
model_selector = get_model_key_from_translation(translated_model_selector, language_selector)
|
|
|
195 |
|
196 |
print(f"Processing image. Language: {language_selector}, Model: {model_selector}, Threshold: {threshold}")
|
197 |
|
198 |
# Load the selected model
|
|
|
199 |
model, processor = load_model(model_selector)
|
200 |
|
201 |
# Process the image
|
|
|
202 |
inputs = processor(images=image, return_tensors="pt")
|
203 |
outputs = model(**inputs)
|
204 |
|
205 |
# Convert model output to usable detection results with custom threshold
|
|
|
206 |
target_sizes = torch.tensor([image.size[::-1]])
|
207 |
results = processor.post_process_object_detection(
|
208 |
outputs, threshold=threshold, target_sizes=target_sizes
|
209 |
)[0]
|
210 |
|
211 |
# Create a copy of the image for drawing
|
|
|
212 |
image_with_boxes = image.copy()
|
213 |
draw = ImageDraw.Draw(image_with_boxes)
|
214 |
|
@@ -278,15 +303,118 @@ def detect_objects(image, language_selector, translated_model_selector, threshol
|
|
278 |
else:
|
279 |
detection_info += "No objects detected. Try lowering the threshold."
|
280 |
|
281 |
-
|
|
|
|
|
|
|
282 |
|
283 |
except Exception as e:
|
284 |
error_message = f"Error in object detection:\n{str(e)}\n\nStack trace:\n{traceback.format_exc()}"
|
|
|
|
|
285 |
print(error_message)
|
286 |
-
# Return original image, error info, and error message
|
287 |
return image if image else None, "Detection failed. See error panel below.", error_message
|
288 |
|
289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
def build_app():
|
291 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
292 |
with gr.Row():
|
@@ -302,14 +430,14 @@ def build_app():
|
|
302 |
with gr.Column(scale=1):
|
303 |
model_selector = gr.Dropdown(
|
304 |
choices=get_translated_model_choices("English"),
|
305 |
-
value=t("English", "model_fast"),
|
306 |
label=t("English", "dropdown_detection_model_label")
|
307 |
)
|
308 |
with gr.Column(scale=1):
|
309 |
threshold_slider = gr.Slider(
|
310 |
minimum=0.1,
|
311 |
maximum=0.95,
|
312 |
-
value=0.5,
|
313 |
step=0.05,
|
314 |
label=t("English", "threshold_label")
|
315 |
)
|
@@ -336,77 +464,25 @@ def build_app():
|
|
336 |
elem_classes=["error-panel"]
|
337 |
)
|
338 |
|
339 |
-
#
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
gr.update(
|
349 |
-
choices=translated_choices,
|
350 |
-
value=default_model,
|
351 |
-
label=t(selected_language, "dropdown_detection_model_label")
|
352 |
-
),
|
353 |
-
gr.update(label=t(selected_language, "threshold_label")),
|
354 |
-
gr.update(label=t(selected_language, "input_label")),
|
355 |
-
gr.update(value=t(selected_language, "button")),
|
356 |
-
gr.update(label=t(selected_language, "output_label")),
|
357 |
-
gr.update(label=t(selected_language, "info_label")),
|
358 |
-
gr.update(label=t(selected_language, "error_label"), value="", visible=False) # Clear errors
|
359 |
-
]
|
360 |
-
except Exception as e:
|
361 |
-
error_message = f"Error updating interface language:\n{str(e)}\n\nStack trace:\n{traceback.format_exc()}"
|
362 |
-
print(error_message)
|
363 |
-
|
364 |
-
# Return safe defaults
|
365 |
-
return [
|
366 |
-
gr.update(), # Keep current title
|
367 |
-
gr.update(), # Keep current language selector
|
368 |
-
gr.update(), # Keep current model selector
|
369 |
-
gr.update(), # Keep current threshold
|
370 |
-
gr.update(), # Keep current input label
|
371 |
-
gr.update(), # Keep current button
|
372 |
-
gr.update(), # Keep current output label
|
373 |
-
gr.update(), # Keep current info label
|
374 |
-
gr.update(label="Error Messages", value=error_message, visible=True) # Show error
|
375 |
-
]
|
376 |
-
|
377 |
-
# Enhanced detection function with error handling
|
378 |
-
def safe_detect_objects(image, language_selector, translated_model_selector, threshold):
|
379 |
-
if image is None:
|
380 |
-
return None, "Please upload an image first.", ""
|
381 |
-
|
382 |
-
try:
|
383 |
-
result_image, info, error = detect_objects(image, language_selector, translated_model_selector,
|
384 |
-
threshold)
|
385 |
-
|
386 |
-
# Update error panel visibility based on whether there's an error
|
387 |
-
error_visible = bool(error.strip())
|
388 |
-
|
389 |
-
return (
|
390 |
-
result_image,
|
391 |
-
info,
|
392 |
-
gr.update(value=error, visible=error_visible)
|
393 |
-
)
|
394 |
|
395 |
-
|
396 |
-
|
397 |
-
print(error_message)
|
398 |
-
return (
|
399 |
-
image, # Return original image
|
400 |
-
"Detection failed due to unexpected error. See error panel below.",
|
401 |
-
gr.update(value=error_message, visible=True)
|
402 |
-
)
|
403 |
|
404 |
# Connect language change event
|
405 |
language_selector.change(
|
406 |
fn=update_interface,
|
407 |
inputs=language_selector,
|
408 |
outputs=[title, language_selector, model_selector, threshold_slider,
|
409 |
-
input_image, button, output_image, detection_info, error_panel],
|
410 |
queue=False
|
411 |
)
|
412 |
|
@@ -417,11 +493,20 @@ def build_app():
|
|
417 |
outputs=[output_image, detection_info, error_panel]
|
418 |
)
|
419 |
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
return app
|
421 |
|
422 |
|
423 |
-
# Initialize with default model
|
|
|
|
|
424 |
load_model("DETR ResNet-50")
|
|
|
425 |
|
426 |
# Launch the application
|
427 |
if __name__ == "__main__":
|
|
|
6 |
import transformers
|
7 |
import warnings
|
8 |
import traceback
|
9 |
+
import datetime
|
10 |
|
11 |
warnings.filterwarnings("ignore", message=".*copying from a non-meta parameter.*")
|
12 |
|
|
|
15 |
current_processor = None
|
16 |
current_model_name = None
|
17 |
|
18 |
+
# Global debug state
|
19 |
+
debug_info = {"last_error": "", "step": "", "language": "", "timestamp": ""}
|
20 |
+
|
21 |
# Available models with better selection
|
22 |
available_models = {
|
|
|
23 |
"DETR ResNet-50": "facebook/detr-resnet-50",
|
24 |
"DETR ResNet-101": "facebook/detr-resnet-101",
|
25 |
"DETR DC5": "facebook/detr-resnet-50-dc5",
|
|
|
29 |
|
30 |
def load_model(model_key):
|
31 |
"""Load model and processor based on selected model key"""
|
32 |
+
global current_model, current_processor, current_model_name, debug_info
|
33 |
|
34 |
model_name = available_models[model_key]
|
35 |
|
36 |
# Only load if it's a different model
|
37 |
if current_model_name != model_name:
|
38 |
+
debug_info["step"] = f"Loading model: {model_name}"
|
39 |
print(f"Loading model: {model_name}")
|
40 |
current_processor = DetrImageProcessor.from_pretrained(model_name)
|
41 |
current_model = DetrForObjectDetection.from_pretrained(model_name)
|
42 |
current_model_name = model_name
|
43 |
print(f"Model loaded: {model_name}")
|
44 |
print(f"Available labels: {list(current_model.config.id2label.values())}")
|
45 |
+
debug_info["step"] = f"Model loaded successfully: {model_name}"
|
46 |
|
47 |
return current_model, current_processor
|
48 |
|
|
|
53 |
print(f"Font file {font_path} not found. Using default font.")
|
54 |
font = ImageFont.load_default()
|
55 |
else:
|
56 |
+
font = ImageFont.truetype(str(font_path), size=100)
|
57 |
|
58 |
# Set up translations for the app
|
59 |
translations = {
|
|
|
67 |
"button": "Detect Objects",
|
68 |
"info_label": "Detection Info",
|
69 |
"error_label": "Error Messages",
|
70 |
+
"debug_label": "Debug Status",
|
71 |
+
"debug_button": "Show Debug Status",
|
72 |
"model_fast": "General Objects (fast)",
|
73 |
"model_precision": "General Objects (high precision)",
|
74 |
"model_small": "Small Objects/Details (slow)",
|
|
|
84 |
"button": "Detectar objetos",
|
85 |
"info_label": "Información de detección",
|
86 |
"error_label": "Mensajes de error",
|
87 |
+
"debug_label": "Estado de depuración",
|
88 |
+
"debug_button": "Mostrar estado de depuración",
|
89 |
"model_fast": "Objetos generales (rápido)",
|
90 |
"model_precision": "Objetos generales (precisión alta)",
|
91 |
"model_small": "Objetos pequeños/detalles (lento)",
|
|
|
101 |
"button": "Détecter les objets",
|
102 |
"info_label": "Information de détection",
|
103 |
"error_label": "Messages d'erreur",
|
104 |
+
"debug_label": "État de débogage",
|
105 |
+
"debug_button": "Afficher l'état de débogage",
|
106 |
"model_fast": "Objets généraux (rapide)",
|
107 |
"model_precision": "Objets généraux (haute précision)",
|
108 |
"model_small": "Petits objets/détails (lent)",
|
|
|
117 |
|
118 |
def get_translated_model_choices(language):
|
119 |
"""Get model choices translated to the selected language"""
|
120 |
+
global debug_info
|
121 |
+
debug_info["step"] = f"Translating model choices for {language}"
|
122 |
+
|
123 |
model_mapping = {
|
124 |
"DETR ResNet-50": "model_fast",
|
125 |
"DETR ResNet-101": "model_precision",
|
|
|
133 |
translation_key = model_mapping[model_key]
|
134 |
translated_name = t(language, translation_key)
|
135 |
else:
|
136 |
+
translated_name = model_key
|
137 |
translated_choices.append(translated_name)
|
138 |
|
139 |
+
debug_info["step"] = f"Model choices translated: {translated_choices}"
|
140 |
return translated_choices
|
141 |
|
142 |
|
|
|
175 |
return f"Helsinki-NLP/opus-mt-en-{target}"
|
176 |
|
177 |
|
178 |
+
# Translation cache
|
179 |
translation_cache = {}
|
180 |
|
181 |
|
|
|
204 |
|
205 |
def detect_objects(image, language_selector, translated_model_selector, threshold):
|
206 |
"""Enhanced object detection with adjustable threshold and better info"""
|
207 |
+
global debug_info
|
208 |
+
|
209 |
try:
|
210 |
+
debug_info["step"] = "Starting object detection"
|
211 |
+
debug_info["timestamp"] = str(datetime.datetime.now())
|
212 |
+
|
213 |
# Get the actual model key from the translated name
|
214 |
model_selector = get_model_key_from_translation(translated_model_selector, language_selector)
|
215 |
+
debug_info["step"] = f"Model key resolved: {model_selector}"
|
216 |
|
217 |
print(f"Processing image. Language: {language_selector}, Model: {model_selector}, Threshold: {threshold}")
|
218 |
|
219 |
# Load the selected model
|
220 |
+
debug_info["step"] = "Loading model"
|
221 |
model, processor = load_model(model_selector)
|
222 |
|
223 |
# Process the image
|
224 |
+
debug_info["step"] = "Processing image with model"
|
225 |
inputs = processor(images=image, return_tensors="pt")
|
226 |
outputs = model(**inputs)
|
227 |
|
228 |
# Convert model output to usable detection results with custom threshold
|
229 |
+
debug_info["step"] = "Post-processing results"
|
230 |
target_sizes = torch.tensor([image.size[::-1]])
|
231 |
results = processor.post_process_object_detection(
|
232 |
outputs, threshold=threshold, target_sizes=target_sizes
|
233 |
)[0]
|
234 |
|
235 |
# Create a copy of the image for drawing
|
236 |
+
debug_info["step"] = "Drawing bounding boxes"
|
237 |
image_with_boxes = image.copy()
|
238 |
draw = ImageDraw.Draw(image_with_boxes)
|
239 |
|
|
|
303 |
else:
|
304 |
detection_info += "No objects detected. Try lowering the threshold."
|
305 |
|
306 |
+
debug_info["step"] = "Detection completed successfully"
|
307 |
+
debug_info["last_error"] = ""
|
308 |
+
|
309 |
+
return image_with_boxes, detection_info, ""
|
310 |
|
311 |
except Exception as e:
|
312 |
error_message = f"Error in object detection:\n{str(e)}\n\nStack trace:\n{traceback.format_exc()}"
|
313 |
+
debug_info["last_error"] = error_message
|
314 |
+
debug_info["step"] = f"ERROR in detection: {str(e)}"
|
315 |
print(error_message)
|
|
|
316 |
return image if image else None, "Detection failed. See error panel below.", error_message
|
317 |
|
318 |
|
319 |
+
def update_interface(selected_language):
|
320 |
+
"""Update interface language with comprehensive error handling"""
|
321 |
+
global debug_info
|
322 |
+
|
323 |
+
debug_info["language"] = selected_language
|
324 |
+
debug_info["timestamp"] = str(datetime.datetime.now())
|
325 |
+
debug_info["step"] = "Starting language interface update"
|
326 |
+
|
327 |
+
try:
|
328 |
+
debug_info["step"] = "Getting translated model choices"
|
329 |
+
translated_choices = get_translated_model_choices(selected_language)
|
330 |
+
|
331 |
+
debug_info["step"] = "Getting default model translation"
|
332 |
+
default_model = t(selected_language, "model_fast")
|
333 |
+
|
334 |
+
debug_info["step"] = "Creating Gradio updates"
|
335 |
+
|
336 |
+
updates = [
|
337 |
+
gr.update(value=t(selected_language, "title")),
|
338 |
+
gr.update(label=t(selected_language, "dropdown_label")),
|
339 |
+
gr.update(
|
340 |
+
choices=translated_choices,
|
341 |
+
value=default_model,
|
342 |
+
label=t(selected_language, "dropdown_detection_model_label")
|
343 |
+
),
|
344 |
+
gr.update(label=t(selected_language, "threshold_label")),
|
345 |
+
gr.update(label=t(selected_language, "input_label")),
|
346 |
+
gr.update(value=t(selected_language, "button")),
|
347 |
+
gr.update(label=t(selected_language, "output_label")),
|
348 |
+
gr.update(label=t(selected_language, "info_label")),
|
349 |
+
gr.update(label=t(selected_language, "error_label"), value="", visible=False),
|
350 |
+
gr.update(label=t(selected_language, "debug_label")),
|
351 |
+
gr.update(value=t(selected_language, "debug_button"))
|
352 |
+
]
|
353 |
+
|
354 |
+
debug_info["step"] = "Interface update completed successfully"
|
355 |
+
debug_info["last_error"] = ""
|
356 |
+
|
357 |
+
return updates
|
358 |
+
|
359 |
+
except Exception as e:
|
360 |
+
error_msg = f"ERROR in interface update at step '{debug_info['step']}':\n{str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
361 |
+
debug_info["last_error"] = error_msg
|
362 |
+
debug_info["step"] = f"FAILED: {str(e)}"
|
363 |
+
|
364 |
+
# Return safe updates that don't change anything
|
365 |
+
safe_updates = [gr.update() for _ in range(11)]
|
366 |
+
return safe_updates
|
367 |
+
|
368 |
+
|
369 |
+
def get_debug_status():
|
370 |
+
"""Get current debug status for display"""
|
371 |
+
global debug_info
|
372 |
+
|
373 |
+
status = f"""🔍 DEBUG STATUS:
|
374 |
+
Current Language: {debug_info.get('language', 'N/A')}
|
375 |
+
Last Timestamp: {debug_info.get('timestamp', 'N/A')}
|
376 |
+
Current Step: {debug_info.get('step', 'N/A')}
|
377 |
+
Last Error: {debug_info.get('last_error', 'None')}
|
378 |
+
|
379 |
+
Available Models: {list(available_models.keys())}
|
380 |
+
Current Model: {current_model_name or 'None loaded'}
|
381 |
+
Translation Cache Size: {len(translation_cache)}
|
382 |
+
"""
|
383 |
+
return status
|
384 |
+
|
385 |
+
|
386 |
+
def safe_detect_objects(image, language_selector, translated_model_selector, threshold):
|
387 |
+
"""Safe wrapper for object detection with error handling"""
|
388 |
+
global debug_info
|
389 |
+
|
390 |
+
if image is None:
|
391 |
+
debug_info["step"] = "No image provided"
|
392 |
+
return None, "Please upload an image first.", ""
|
393 |
+
|
394 |
+
try:
|
395 |
+
result_image, info, error = detect_objects(image, language_selector, translated_model_selector, threshold)
|
396 |
+
|
397 |
+
# Update error panel visibility based on whether there's an error
|
398 |
+
error_visible = bool(error.strip())
|
399 |
+
|
400 |
+
return (
|
401 |
+
result_image,
|
402 |
+
info,
|
403 |
+
gr.update(value=error, visible=error_visible)
|
404 |
+
)
|
405 |
+
|
406 |
+
except Exception as e:
|
407 |
+
error_message = f"Unexpected error in detection:\n{str(e)}\n\nStack trace:\n{traceback.format_exc()}"
|
408 |
+
debug_info["last_error"] = error_message
|
409 |
+
debug_info["step"] = f"UNEXPECTED ERROR: {str(e)}"
|
410 |
+
print(error_message)
|
411 |
+
return (
|
412 |
+
image,
|
413 |
+
"Detection failed due to unexpected error. See error panel below.",
|
414 |
+
gr.update(value=error_message, visible=True)
|
415 |
+
)
|
416 |
+
|
417 |
+
|
418 |
def build_app():
|
419 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
420 |
with gr.Row():
|
|
|
430 |
with gr.Column(scale=1):
|
431 |
model_selector = gr.Dropdown(
|
432 |
choices=get_translated_model_choices("English"),
|
433 |
+
value=t("English", "model_fast"),
|
434 |
label=t("English", "dropdown_detection_model_label")
|
435 |
)
|
436 |
with gr.Column(scale=1):
|
437 |
threshold_slider = gr.Slider(
|
438 |
minimum=0.1,
|
439 |
maximum=0.95,
|
440 |
+
value=0.5,
|
441 |
step=0.05,
|
442 |
label=t("English", "threshold_label")
|
443 |
)
|
|
|
464 |
elem_classes=["error-panel"]
|
465 |
)
|
466 |
|
467 |
+
# Debug panel - always visible for debugging in HF
|
468 |
+
with gr.Row():
|
469 |
+
debug_panel = gr.Textbox(
|
470 |
+
label=t("English", "debug_label"),
|
471 |
+
lines=10,
|
472 |
+
max_lines=20,
|
473 |
+
value="Application started - ready for debugging",
|
474 |
+
visible=True
|
475 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
|
477 |
+
with gr.Row():
|
478 |
+
debug_button = gr.Button(t("English", "debug_button"), size="sm")
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
|
480 |
# Connect language change event
|
481 |
language_selector.change(
|
482 |
fn=update_interface,
|
483 |
inputs=language_selector,
|
484 |
outputs=[title, language_selector, model_selector, threshold_slider,
|
485 |
+
input_image, button, output_image, detection_info, error_panel, debug_panel, debug_button],
|
486 |
queue=False
|
487 |
)
|
488 |
|
|
|
493 |
outputs=[output_image, detection_info, error_panel]
|
494 |
)
|
495 |
|
496 |
+
# Connect debug button click event
|
497 |
+
debug_button.click(
|
498 |
+
fn=get_debug_status,
|
499 |
+
outputs=debug_panel
|
500 |
+
)
|
501 |
+
|
502 |
return app
|
503 |
|
504 |
|
505 |
+
# Initialize with default model and debug info
|
506 |
+
debug_info["step"] = "Initializing default model"
|
507 |
+
debug_info["timestamp"] = str(datetime.datetime.now())
|
508 |
load_model("DETR ResNet-50")
|
509 |
+
debug_info["step"] = "Application ready"
|
510 |
|
511 |
# Launch the application
|
512 |
if __name__ == "__main__":
|