Create new_review_code.py
Browse files- new_review_code.py +74 -0
new_review_code.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments,BitsAndBytesConfig
|
5 |
+
from datasets import load_dataset
|
6 |
+
from trl import SFTTrainer
|
7 |
+
from peft import AutoPeftModelForCausalLM, LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
8 |
+
from utils import find_all_linear_names, print_trainable_parameters
|
9 |
+
|
10 |
+
output_dir="./results"
|
11 |
+
model_name ="codellama/CodeLlama-7b-hf"
|
12 |
+
|
13 |
+
dataset = load_dataset('timdettmers/openassistant-guanaco', split="train")
|
14 |
+
|
15 |
+
bnb_config = BitsAndBytesConfig(
|
16 |
+
load_in_4bit=True,
|
17 |
+
bnb_4bit_quant_type="nf4",
|
18 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
19 |
+
bnb_4bit_use_double_quant=True,
|
20 |
+
)
|
21 |
+
|
22 |
+
base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, quantization_config=bnb_config)
|
23 |
+
base_model.config.use_cache = False
|
24 |
+
base_model = prepare_model_for_kbit_training(base_model)
|
25 |
+
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
+
tokenizer.pad_token = tokenizer.eos_token
|
28 |
+
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training
|
29 |
+
|
30 |
+
# Change the LORA hyperparameters accordingly to fit your use case
|
31 |
+
peft_config = LoraConfig(
|
32 |
+
r=32,
|
33 |
+
lora_alpha=16,
|
34 |
+
target_modules=find_all_linear_names(base_model),
|
35 |
+
lora_dropout=0.05,
|
36 |
+
bias="none",
|
37 |
+
task_type="CAUSAL_LM",
|
38 |
+
)
|
39 |
+
|
40 |
+
base_model = get_peft_model(base_model, peft_config)
|
41 |
+
print_trainable_parameters(base_model)
|
42 |
+
|
43 |
+
# Parameters for training arguments details => https://github.com/huggingface/transformers/blob/main/src/transformers/training_args.py#L158
|
44 |
+
training_args = TrainingArguments(
|
45 |
+
per_device_train_batch_size=1,
|
46 |
+
gradient_accumulation_steps=1,
|
47 |
+
gradient_checkpointing =True,
|
48 |
+
max_grad_norm= 0.3,
|
49 |
+
num_train_epochs=3,
|
50 |
+
learning_rate=1e-4,
|
51 |
+
bf16=True,
|
52 |
+
save_total_limit=3,
|
53 |
+
logging_steps=300,
|
54 |
+
output_dir=output_dir,
|
55 |
+
optim="paged_adamw_32bit",
|
56 |
+
lr_scheduler_type="constant",
|
57 |
+
warmup_ratio=0.05,
|
58 |
+
)
|
59 |
+
|
60 |
+
trainer = SFTTrainer(
|
61 |
+
base_model,
|
62 |
+
train_dataset=dataset,
|
63 |
+
dataset_text_field="text",
|
64 |
+
tokenizer=tokenizer,
|
65 |
+
max_seq_length=512,
|
66 |
+
args=training_args
|
67 |
+
)
|
68 |
+
|
69 |
+
trainer.train()
|
70 |
+
trainer.save_model(output_dir)
|
71 |
+
|
72 |
+
output_dir = os.path.join(output_dir, "final_checkpoint")
|
73 |
+
trainer.model.save_pretrained(output_dir)
|
74 |
+
tokenizer.save_pretrained(output_dir)
|