Sagar-Vispute
commited on
Commit
·
be07e2e
1
Parent(s):
b7e8bd7
Initial commit
Browse files- app.py +37 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
|
6 |
+
# UI Components for Streamlit
|
7 |
+
st.title("Ansible Code Reviewer")
|
8 |
+
uploaded_files = st.file_uploader("Upload your Ansible code files", type=['yml', 'yaml'], accept_multiple_files=True)
|
9 |
+
|
10 |
+
if uploaded_files:
|
11 |
+
result = []
|
12 |
+
model_name = "facebook/incoder-1B" # Example model name
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
15 |
+
|
16 |
+
# Process each uploaded file
|
17 |
+
for uploaded_file in uploaded_files:
|
18 |
+
content = uploaded_file.read().decode("utf-8")
|
19 |
+
# Here you could use the model to evaluate the content
|
20 |
+
tokens = tokenizer(content, return_tensors="pt")
|
21 |
+
review_output = model.generate(**tokens)
|
22 |
+
review_text = tokenizer.decode(review_output[0], skip_special_tokens=True)
|
23 |
+
|
24 |
+
# Store results
|
25 |
+
result.append({
|
26 |
+
"filename": uploaded_file.name,
|
27 |
+
"review": review_text
|
28 |
+
})
|
29 |
+
|
30 |
+
# Save the results to a JSON file
|
31 |
+
json_result = json.dumps(result, indent=4)
|
32 |
+
with open("review_results.json", "w") as f:
|
33 |
+
f.write(json_result)
|
34 |
+
|
35 |
+
# Display results and download link
|
36 |
+
st.json(result)
|
37 |
+
st.download_button("Download Review Results", json_result, file_name="review_results.json")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|
3 |
+
ansible
|
4 |
+
pandas
|