from transformers.utils import logging from transformers import AutoProcessor from transformers import CLIPModel import gradio as gr import torch import requests from PIL import Image logging.set_verbosity_error() model = CLIPModel.from_pretrained( "openai/clip-vit-large-patch14") processor = AutoProcessor.from_pretrained( "openai/clip-vit-large-patch14") def process_image(input_type, image_url, image_upload, labels): if input_type == "URL": raw_image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') else: raw_image = image_upload labels = [l.strip() for l in labels.split(",")] print(labels) inputs = processor(text=labels, images=raw_image, return_tensors="pt", padding=True) outputs = model(**inputs) probs = outputs.logits_per_image.softmax(dim=1)[0] probs = list(probs) for i in range(len(labels)): print(f"label: {labels[i]} - probability of detected object being {probs[i].item():.4f}%") answer = str(labels[probs.index(max(probs))]).capitalize() print(answer) answer = ( f"""

The detected object is

{answer}

with a probability of

{max(probs)*100:.2f}

""" ) return answer def display_image_from_url(image_url): if image_url: image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') return image return None def toggle_inputs(input_type): if input_type == "URL": return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True) else: return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) sample_image = Image.open("./huggingface_friends.jpg") sample_labels = "a photo of a man, a photo of a dog, cats, two cats, group of friends dining, food, people eating, men and women" with gr.Blocks() as demo: gr.Markdown( """ # Determine best label for the picture out of a set of possible labels - test & demo app by Srinivas.V.. Paste either URL of an image or upload the image, type-in your label choices for the image, seperated by comma (',') and submit. """) input_type = gr.Radio(choices=["URL", "Upload"], label="Input Type") image_url = gr.Textbox(value= 'https://huggingface.co/spaces/vsrinivas/Determine_Best_Label_from_Set_of_Given_Labels/resolve/main/huggingface_friends.jpg', label="Type-in/ Paste Image URL", visible=False) url_image = gr.Image(value=sample_image,type="pil", label="URL Image", visible=False) image_upload = gr.Image(value=sample_image,type="pil", label="Uploaded Image", visible=False) labels = gr.Textbox(value=sample_labels, label="Type in your labels seperated by comma(',')", visible=False, lines=2) input_type.change(fn=toggle_inputs, inputs=input_type, outputs=[image_url, url_image, image_upload, labels]) image_url.change(fn=display_image_from_url, inputs=image_url, outputs=url_image) submit_btn = gr.Button("Submit") processed_image = gr.HTML(label="The Answer") submit_btn.click(fn=process_image, inputs=[input_type, image_url, image_upload, labels], outputs=processed_image) demo.launch(debug=True, share=True)