Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,11 +6,17 @@ from pinecone import Pinecone
|
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
from datasets import load_dataset
|
8 |
import os
|
9 |
-
import
|
|
|
|
|
|
|
10 |
|
11 |
model = SentenceTransformer('sentence-transformers/clip-ViT-B-32')
|
12 |
|
13 |
-
fashion = load_dataset("ashraq/fashion-product-images-small", split="train
|
|
|
|
|
|
|
14 |
images = fashion['image']
|
15 |
metadata = fashion.remove_columns('image')
|
16 |
item_list = list(set(metadata['productDisplayName']))
|
@@ -66,7 +72,8 @@ def process_input(query, slider_value):
|
|
66 |
search_words = query.title().split()
|
67 |
pattern = r"(?=.*\b" + r"\b)(?=.*\b".join(map(re.escape, search_words)) + r"\b)"
|
68 |
filtered_items = [item for item in item_list if re.search(pattern, item)]
|
69 |
-
filtered_df = fashion.filter(lambda x: x['productDisplayName'] in filtered_items)
|
|
|
70 |
#####################
|
71 |
try:
|
72 |
slider_value = float(slider_value)
|
@@ -85,8 +92,11 @@ def process_input(query, slider_value):
|
|
85 |
matches = [x["metadata"]['productDisplayName'] for x in result["matches"]]
|
86 |
|
87 |
###########
|
88 |
-
exact_match = filtered_df.filter(lambda x: x['productDisplayName'] == query)[0]['productDisplayName']
|
89 |
-
exact_img = filtered_df.filter(lambda x: x['productDisplayName'] == query)[0]['image']
|
|
|
|
|
|
|
90 |
if exact_match is not None:
|
91 |
imgs.insert(0, exact_img)
|
92 |
matches.insert(0, exact_match)
|
|
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
from datasets import load_dataset
|
8 |
import os
|
9 |
+
import
|
10 |
+
####################
|
11 |
+
import pandas as pd
|
12 |
+
##########################
|
13 |
|
14 |
model = SentenceTransformer('sentence-transformers/clip-ViT-B-32')
|
15 |
|
16 |
+
fashion = load_dataset("ashraq/fashion-product-images-small", split="train
|
17 |
+
###############
|
18 |
+
fashion_df = pd.DataFrame(fashion)
|
19 |
+
####################
|
20 |
images = fashion['image']
|
21 |
metadata = fashion.remove_columns('image')
|
22 |
item_list = list(set(metadata['productDisplayName']))
|
|
|
72 |
search_words = query.title().split()
|
73 |
pattern = r"(?=.*\b" + r"\b)(?=.*\b".join(map(re.escape, search_words)) + r"\b)"
|
74 |
filtered_items = [item for item in item_list if re.search(pattern, item)]
|
75 |
+
# filtered_df = fashion.filter(lambda x: x['productDisplayName'] in filtered_items)
|
76 |
+
filtered_df = fashion_df[fashion_df['productDisplayName'].isin(filtered_items)]
|
77 |
#####################
|
78 |
try:
|
79 |
slider_value = float(slider_value)
|
|
|
92 |
matches = [x["metadata"]['productDisplayName'] for x in result["matches"]]
|
93 |
|
94 |
###########
|
95 |
+
# exact_match = filtered_df.filter(lambda x: x['productDisplayName'] == query)[0]['productDisplayName']
|
96 |
+
# exact_img = filtered_df.filter(lambda x: x['productDisplayName'] == query)[0]['image']
|
97 |
+
exact_match = filtered_df[filtered_df['productDisplayName']==query]['productDisplayName']
|
98 |
+
exact_img = filtered_df[filtered_df['productDisplayName']==query]['image']
|
99 |
+
|
100 |
if exact_match is not None:
|
101 |
imgs.insert(0, exact_img)
|
102 |
matches.insert(0, exact_match)
|