File size: 21,072 Bytes
dcab4e1
 
 
 
 
 
 
 
 
 
 
8e01acb
 
a7d4590
 
dcab4e1
 
0f1372a
dcab4e1
0f1372a
 
8e01acb
dcab4e1
 
 
 
 
 
 
 
40f90db
dcab4e1
 
 
84b997f
1589ebc
011abb8
c6e6f19
84b997f
dcab4e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0417f4
fa6dd7e
dcab4e1
b17793d
 
 
 
1589ebc
dcab4e1
 
 
 
b17793d
0f8a652
 
 
 
b7cb604
dcab4e1
 
 
 
 
 
 
b17793d
89524ee
dcab4e1
 
 
 
 
230b373
dcab4e1
230b373
0f1372a
 
 
 
 
 
dcab4e1
 
 
 
 
 
 
0f1372a
dcab4e1
 
 
 
 
 
 
 
 
 
 
 
 
4eab1ba
 
 
dcab4e1
4eab1ba
 
 
 
 
 
 
 
 
 
 
dcab4e1
4eab1ba
 
 
dcab4e1
4eab1ba
 
 
 
 
 
 
 
 
 
89524ee
4eab1ba
 
 
 
dcab4e1
4eab1ba
 
 
 
 
 
 
 
 
29791a1
4eab1ba
 
 
 
 
84b997f
4eab1ba
 
 
 
 
dcab4e1
4eab1ba
1589ebc
4eab1ba
 
 
 
 
 
 
 
dcab4e1
4eab1ba
 
 
 
 
 
 
 
 
1589ebc
4eab1ba
 
 
 
 
 
 
 
 
 
 
 
b17793d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eab1ba
 
 
b17793d
4eab1ba
 
b17793d
4eab1ba
 
 
 
 
 
 
 
b17793d
4eab1ba
 
 
b17793d
4eab1ba
 
 
 
 
 
b17793d
4eab1ba
 
 
 
b17793d
4eab1ba
 
 
 
 
 
 
b17793d
 
4eab1ba
 
 
 
0fc43f2
4eab1ba
 
 
 
b17793d
 
4eab1ba
 
 
 
efd6225
56e372d
4f24f3f
b17793d
4eab1ba
 
 
 
 
b17793d
4eab1ba
 
b17793d
4eab1ba
 
 
 
 
 
 
 
b17793d
4eab1ba
 
 
 
 
 
 
b17793d
4eab1ba
 
b17793d
4eab1ba
 
dcab4e1
4eab1ba
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
from elevenlabs import VoiceSettings
from elevenlabs.client import ElevenLabs
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
from ai71  import AI71
from datetime import datetime
import os
import time
from pydub import AudioSegment
from base64 import b64encode
import gradio as gr
import concurrent.futures


AI71_API_KEY = os.getenv('AI71_API_KEY')
XI_API_KEY = os.getenv('ELEVEN_LABS_API_KEY')
client = ElevenLabs(api_key=XI_API_KEY)

translator = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_1.2B")
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_1.2B")

transcriber = gr.load("models/openai/whisper-large-v3-turbo")
# transcriber = whisper.load_model("turbo")

language_codes = {"English":"en", "Hindi":"hi", "Portuguese":"pt", "Chinese":"zh", "Spanish":"es",
"French":"fr", "German":"de", "Japanese":"ja", "Arabic":"ar", "Russian":"ru",
"Korean":"ko", "Indonesian":"id", "Italian":"it", "Dutch":"nl","Turkish":"tr",
"Polish":"pl", "Swedish":"sv", "Filipino":"fil", "Malay":"ms", "Romanian":"ro",
"Ukrainian":"uk", "Greek":"el", "Czech":"cs", "Danish":"da", "Finnish":"fi",
"Bulgarian":"bg", "Croatian":"hr", "Slovak":"sk"}

# meeting_texts = []
n_participants = 4 # This can be adjusted based on the number of people in the call
language_choices = ["English", "Polish", "Hindi", "Arabic"]

def clear_all():
    global meeting_texts
#    meeting_texts = []  # Reset meeting texts
    return [None] * (n_participants * 4 + 1)+[gr.State([])]  # Reset outputs of transcripts, translated texts, and dubbed videos


def wait_for_dubbing_completion(dubbing_id: str) -> bool:
    """
    Waits for the dubbing process to complete by periodically checking the status.
    Args:
        dubbing_id (str): The dubbing project id.
    Returns:
        bool: True if the dubbing is successful, False otherwise.
    """
    MAX_ATTEMPTS = 120
    CHECK_INTERVAL = 10  # In seconds

    for _ in range(MAX_ATTEMPTS):
        metadata = client.dubbing.get_dubbing_project_metadata(dubbing_id)
        if metadata.status == "dubbed":
            return True
        elif metadata.status == "dubbing":
            print(
                "Dubbing in progress... Will check status again in",
                CHECK_INTERVAL,
                "seconds.",
            )
            time.sleep(CHECK_INTERVAL)
        else:
            print("Dubbing failed:", metadata.error_message)
            return False

    print("Dubbing timed out")
    return False

def download_dubbed_file(dubbing_id: str, language_code: str) -> str:
    """
    Downloads the dubbed file for a given dubbing ID and language code.
    Args:
        dubbing_id: The ID of the dubbing project.
        language_code: The language code for the dubbing.
    Returns:
        The file path to the downloaded dubbed file.
    """
    dir_path = f"data/{dubbing_id}"
    os.makedirs(dir_path, exist_ok=True)

    file_path = f"{dir_path}/{language_code}.mp4"
    with open(file_path, "wb") as file:
        for chunk in client.dubbing.get_dubbed_file(dubbing_id, language_code):
            file.write(chunk)

    return file_path

def create_dub_from_file(
    input_file_path: str,
    file_format: str,
    source_language: str,
    target_language: str,
):
# ) -> Optional[str]:
    """
    Dubs an audio or video file from one language to another and saves the output.
    Args:
        input_file_path (str): The file path of the audio or video to dub.
        file_format (str): The file format of the input file.
        source_language (str): The language of the input file.
        target_language (str): The target language to dub into.
    Returns:
        Optional[str]: The file path of the dubbed file or None if operation failed.
    """
    if not os.path.isfile(input_file_path):
        raise FileNotFoundError(f"The input file does not exist: {input_file_path}")

    with open(input_file_path, "rb") as audio_file:
        response = client.dubbing.dub_a_video_or_an_audio_file(
            file=(os.path.basename(input_file_path), audio_file, file_format), # Optional file
            target_lang=target_language, # The target language to dub the content into. Can be none if dubbing studio editor is enabled and running manual mode
            # mode="automatic", # automatic or manual.
            source_lang=source_language, # Source language
            num_speakers=1, # Number of speakers to use for the dubbing.
            watermark=True,  # Whether to apply watermark to the output video.
        )

    # rest of the code
    dubbing_id = response.dubbing_id
    if wait_for_dubbing_completion(dubbing_id):
        output_file_path = download_dubbed_file(dubbing_id, target_language)
        return output_file_path
    else:
        return None


def summarize(meeting_texts):
    meeting_texts = ', '.join([f"{k}: {v}" for i in meeting_texts for k, v in i.items()])
    meeting_date_time = str(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
    # meeting_texts = meeting_date_time + '\n' + meeting_texts

    # meeting_conversation_processed ='\n'.join(mt)
    # print("M:", session_conversation_processed)

    minutes_of_meeting = ""
    for chunk in AI71(AI71_API_KEY.strip()).chat.completions.create(
        model="tiiuae/falcon-180b-chat",
        messages=[
            {"role": "system", "content": f"""You are an expereiced Secretary who can summarize meeting discussions into minutes of meeting.
            Summarize the meeting discussions provided in json format as Speakerwise conversation. 
            Strictly consider ONLY the context given in user content for summarization. Do not generalize the summary with irrelevant content.
            Ensure to mention the title as 'Minutes of Meeting held on {meeting_date_time} and 
            present the summary with better viewing format and title in bold letters"""},
            {"role": "user", "content": meeting_texts},
        ],
        stream=True,
    ):
        if chunk.choices[0].delta.content:
            summary = chunk.choices[0].delta.content
            minutes_of_meeting += summary
    minutes_of_meeting = minutes_of_meeting.replace('User:', '').strip()
    print("\n")
    print("minutes_of_meeting:", minutes_of_meeting)
    return minutes_of_meeting


# Placeholder function for speech to text conversion
def speech_to_text(video):
    print(video, type(video))
    print('Started transcribing')
    audio = AudioSegment.from_file(video)
    audio.export('temp.wav', format="wav")
    
    # transcript = transcriber.transcribe(video).text
    # transcript = transcriber.transcribe(video).text
    transcript = transcriber("temp.wav").split("'")[1].strip()

    print('transcript:', transcript)
    return transcript

# Placeholder function for translating text
def translate_text(text, source_language,target_language):
    tokenizer.src_lang = source_language
    encoded_ln = tokenizer(text, return_tensors="pt")
    generated_tokens = translator.generate(**encoded_ln, forced_bos_token_id=tokenizer.get_lang_id(target_language))
    translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
    print('translated_text:', translated_text)
    return translated_text

# Placeholder function for dubbing (text-to-speech in another language)
def synthesize_speech(video, source_language,target_language):
    print('Started dubbing')
    dub_video = create_dub_from_file(input_file_path = video,
      file_format = 'audio/mpeg',
      source_language = source_language,
      target_language = target_language)
    return dub_video

# # This function handles the processing when any participant speaks
# def process_speaker(video, speaker_idx, n_participants, *language_list):
#     transcript = speech_to_text(video)

#     # Create outputs for each participant
#     outputs = []
#     global meeting_texts
#     def process_translation_dubbing(i):
#         if i != speaker_idx:
#             participant_language = language_codes[language_list[i]]
#             speaker_language = language_codes[language_list[speaker_idx]]
#             translated_text = translate_text(transcript, speaker_language, participant_language)
#             dubbed_video = synthesize_speech(video, speaker_language, participant_language)
#             return translated_text, dubbed_video
#         return None, None

#     with concurrent.futures.ThreadPoolExecutor() as executor:
#         futures = [executor.submit(process_translation_dubbing, i) for i in range(n_participants)]
#         results = [f.result() for f in futures]

#     for i, (translated_text, dubbed_video) in enumerate(results):
#         if i == speaker_idx:
#             outputs.insert(0, transcript)
#         else:
#             outputs.append(translated_text)
#             outputs.append(dubbed_video)
#     if speaker_idx == 0:
#         meeting_texts.append({f"Speaker_{speaker_idx+1}":outputs[0]})
#     else:
#         meeting_texts.append({f"Speaker_{speaker_idx+1}":outputs[1]})

#     print(len(outputs))
#     print(outputs)
#     print('meeting_texts: ',meeting_texts)
#     return outputs

# def create_participant_row(i, language_choices):
#     """Creates the UI for a single participant."""
#     with gr.Row():
#         video_input = gr.Video(label=f"Participant {i+1} Video", interactive=True)
#         language_dropdown = gr.Dropdown(choices=language_choices, label=f"Participant {i+1} Language", value=language_choices[i])
#         transcript_output = gr.Textbox(label=f"Participant {i+1} Transcript")
#         translated_text = gr.Textbox(label="Speaker's Translated Text")
#         dubbed_video = gr.Video(label="Speaker's Dubbed Video")
#         return video_input, language_dropdown, transcript_output, translated_text, dubbed_video

# # Main dynamic Gradio interface
# def create_gradio_interface(n_participants, language_choices):
#     with gr.Blocks() as demo:
#         gr.Markdown("""# LinguaPolis: Bridging Languages, Uniting Teams Globally - Multilingual Conference Call Simulation
#         ## Record your video or upload your video and press the corresponding Submit button at the bottom""")
        
#         video_inputs = []
#         language_dropdowns = []
#         transcript_outputs = []
#         translated_texts = []
#         dubbed_videos = []

#         clear_button = gr.Button("Clear All")
        
#         # Create a row for each participant
#         for i in range(n_participants):
#             video_input, language_dropdown, transcript_output, translated_text, dubbed_video = create_participant_row(i, language_choices)
#             video_inputs.append(video_input)
#             language_dropdowns.append(language_dropdown)
#             transcript_outputs.append(transcript_output)
#             translated_texts.append(translated_text)
#             dubbed_videos.append(dubbed_video)

#         # Create dynamic processing buttons for each participant
#         for i in range(n_participants):
#             gr.Button(f"Submit Speaker {i+1}'s Speech").click(
#                 process_speaker,
#                 [video_inputs[i], gr.State(i), gr.State(n_participants)] + [language_dropdowns[j] for j in range(n_participants)],
#                 [transcript_outputs[i]] + [k for j in zip(translated_texts[:i]+translated_texts[i+1:], dubbed_videos[:i]+dubbed_videos[i+1:]) for k in j]
#            )
#         minutes = gr.Textbox(label="Minutes of Meeting")
#         gr.Button(f"Generate Minutes of meeting").click(summarize, None, minutes)
        
#         # Clear button to reset inputs and outputs
#         clear_button.click(clear_all, None, [*video_inputs, *transcript_outputs, *translated_texts, *dubbed_videos, minutes])

#     # Launch with .queue() to keep it running properly in Jupyter
#     demo.queue().launch(debug=True, share=True)


# create_gradio_interface(n_participants, language_choices)








# def create_dub_from_file(
#     input_file_path: str,
#     file_format: str,
#     source_language: str,
#     target_language: str,
# ):
# # ) -> Optional[str]:
#     """
#     Dubs an audio or video file from one language to another and saves the output.
#     Args:
#         input_file_path (str): The file path of the audio or video to dub.
#         file_format (str): The file format of the input file.
#         source_language (str): The language of the input file.
#         target_language (str): The target language to dub into.
#     Returns:
#         Optional[str]: The file path of the dubbed file or None if operation failed.
#     """
#     if not os.path.isfile(input_file_path):
#         raise FileNotFoundError(f"The input file does not exist: {input_file_path}")

#     with open(input_file_path, "rb") as audio_file:
#         response = client.dubbing.dub_a_video_or_an_audio_file(
#             file=(os.path.basename(input_file_path), audio_file, file_format), # Optional file
#             target_lang=target_language, # The target language to dub the content into. Can be none if dubbing studio editor is enabled and running manual mode
#             # mode="automatic", # automatic or manual.
#             source_lang=source_language, # Source language
#             num_speakers=1, # Number of speakers to use for the dubbing.
#             watermark=True,  # Whether to apply watermark to the output video.
#         )

#     # rest of the code
#     dubbing_id = response.dubbing_id
#     if wait_for_dubbing_completion(dubbing_id):
#         output_file_path = download_dubbed_file(dubbing_id, target_language)
#         return output_file_path
#     else:
#         return None


# # Modify the summarize function to accept and return meeting_texts
# def summarize(meeting_texts):
#     meeting_texts = ', '.join([f"{k}: {v}" for i in meeting_texts for k, v in i.items()])
#     meeting_date_time = str(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
#     # meeting_texts_str = meeting_date_time + '\n' + mt

#     minutes_of_meeting = ""
#     for chunk in AI71(AI71_API_KEY.strip()).chat.completions.create(
#         model="tiiuae/falcon-180b-chat",
#         messages=[
#             {"role": "system", "content": f"""You are an experienced Secretary who can summarize meeting discussions into minutes of meeting.
#             Summarize the meetings discussions provided as Speakerwise conversation. 
#             Strictly consider only the context given in user content for summarization.
#             Ensure to mention the title as 'Minutes of Meeting held on {meeting_date_time}' and present the summary with better viewing format and title in bold letters."""},
#             {"role": "user", "content": meeting_texts},
#         ],
#         stream=True,
#     ):
#         if chunk.choices[0].delta.content:
#             summary = chunk.choices[0].delta.content
#             minutes_of_meeting += summary

#     minutes_of_meeting = minutes_of_meeting.replace('User:', '').strip()
#     print("minutes_of_meeting:", minutes_of_meeting)
#     return minutes_of_meeting


# # Placeholder function for speech to text conversion
# def speech_to_text(video):
#     print(video, type(video))
#     print('Started transcribing')
#     audio = AudioSegment.from_file(video)
#     audio.export('temp.wav', format="wav")
    
#     # transcript = transcriber.transcribe(video).text
#     # transcript = transcriber.transcribe(video).text
#     transcript = transcriber("temp.wav").split("'")[1].strip()

#     print('transcript:', transcript)
#     return transcript

# # Placeholder function for translating text
# def translate_text(text, source_language,target_language):
#     tokenizer.src_lang = source_language
#     encoded_ln = tokenizer(text, return_tensors="pt")
#     generated_tokens = translator.generate(**encoded_ln, forced_bos_token_id=tokenizer.get_lang_id(target_language))
#     translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
#     print('translated_text:', translated_text)
#     return translated_text

# # Placeholder function for dubbing (text-to-speech in another language)
# def synthesize_speech(video, source_language,target_language):
#     print('Started dubbing')
#     dub_video = create_dub_from_file(input_file_path = video,
#       file_format = 'audio/mpeg',
#       source_language = source_language,
#       target_language = target_language)
#     return dub_video


# Update process_speaker function to accept and return meeting_texts
def process_speaker(video, speaker_idx, n_participants, meeting_texts, *language_list):
    transcript = speech_to_text(video)

    # Create outputs for each participant
    outputs = []

    def process_translation_dubbing(i):
        if i != speaker_idx:
            participant_language = language_codes[language_list[i]]
            speaker_language = language_codes[language_list[speaker_idx]]
            translated_text = translate_text(transcript, speaker_language, participant_language)
            dubbed_video = synthesize_speech(video, speaker_language, participant_language)
            return translated_text, dubbed_video
        return None, None

    with concurrent.futures.ThreadPoolExecutor() as executor:
        futures = [executor.submit(process_translation_dubbing, i) for i in range(n_participants)]
        results = [f.result() for f in futures]

    for i, (translated_text, dubbed_video) in enumerate(results):
        if i == speaker_idx:
            outputs.insert(0, transcript)
        else:
            outputs.append(translated_text)
            outputs.append(dubbed_video)

    if speaker_idx == 0:
        meeting_texts.append({f"Speaker_{speaker_idx+1}": outputs[0]})
    else:
        meeting_texts.append({f"Speaker_{speaker_idx+1}": outputs[1]})

    print(len(outputs))
    print(outputs)
    print("meeting_texts:", meeting_texts)
    print('outputs:', outputs)
    outputs.append(meeting_texts)
    print(len(outputs))
    return outputs


def create_participant_row(i, language_choices):
    """Creates the UI for a single participant."""
    with gr.Row():
        video_input = gr.Video(label=f"Participant {i+1} Video", interactive=True)
        language_dropdown = gr.Dropdown(choices=language_codes.keys(), label=f"Participant {i+1} Language", value=language_choices[i])
        transcript_output = gr.Textbox(label=f"Participant {i+1} Transcript")
        translated_text = gr.Textbox(label="Speaker's Translated Text")
        dubbed_video = gr.Video(label="Speaker's Dubbed Video")
        return video_input, language_dropdown, transcript_output, translated_text, dubbed_video


# Modify the Gradio interface to manage the meeting_texts between function calls
def create_gradio_interface(n_participants, language_choices):
    with gr.Blocks() as demo:
        gr.Markdown("""# LinguaPolis: Bridging Languages, Uniting Teams Globally - Multilingual Conference Call Simulation
        ## Assume it is a virtual conference call where the speakers speak one by one 
        ### Select a language, record your video or upload your video and press the corresponding 'Submit button' at the bottom
        #### After the output generation, repeat the above for as many speakers as you want, one by one. When you finish, press 'Generate Minutes of Meeting button' to get the meeting summary""")
        
        video_inputs = []
        language_dropdowns = []
        transcript_outputs = []
        translated_texts = []
        dubbed_videos = []

        clear_button = gr.Button("Clear All")
        meeting_texts = gr.State([])  # Initialize meeting_texts as a Gradio State
        
        # Create a row for each participant
        for i in range(n_participants):
            video_input, language_dropdown, transcript_output, translated_text, dubbed_video = create_participant_row(i, language_choices)
            video_inputs.append(video_input)
            language_dropdowns.append(language_dropdown)
            transcript_outputs.append(transcript_output)
            translated_texts.append(translated_text)
            dubbed_videos.append(dubbed_video)

        # Create dynamic processing buttons for each participant
        for i in range(n_participants):
            gr.Button(f"Submit Speaker {i+1}'s Speech").click(
                process_speaker,
                [video_inputs[i], gr.State(i), gr.State(n_participants), meeting_texts] + [language_dropdowns[j] for j in range(n_participants)],
                [transcript_outputs[i]] + [k for j in zip(translated_texts[:i]+translated_texts[i+1:], dubbed_videos[:i]+dubbed_videos[i+1:]) for k in j] + [meeting_texts]
            )
        
        minutes = gr.Textbox(label="Minutes of Meeting")
        gr.Button(f"Generate Minutes of meeting").click(summarize, [meeting_texts], minutes)
        
        # Clear button to reset inputs and outputs
        clear_button.click(clear_all, None, [*video_inputs, *transcript_outputs, *translated_texts, *dubbed_videos, minutes, meeting_texts])

    demo.launch(debug=True, share=True)
create_gradio_interface(4, language_choices)