Spaces:
Sleeping
Sleeping
File size: 5,430 Bytes
7bc29af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import logging
import os
# os.system("wget -P cvec/ https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt")
import gradio as gr
from dotenv import load_dotenv
from configs.config import Config
from i18n import I18nAuto
from infer.modules.vc.pipeline import Pipeline
VC = Pipeline
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
i18n = I18nAuto()
#(i18n)
load_dotenv()
config = Config()
vc = VC(config)
weight_root = os.getenv("weight_root")
weight_uvr5_root = os.getenv("weight_uvr5_root")
index_root = os.getenv("index_root")
names = []
hubert_model = None
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("在线demo"):
gr.Markdown(
value="""
RVC 在线demo
"""
)
sid = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
with gr.Column():
spk_item = gr.Slider(
minimum=0,
maximum=2333,
step=1,
label=i18n("请选择说话人id"),
value=0,
visible=False,
interactive=True,
)
sid.change(fn=vc.get_vc, inputs=[sid], outputs=[spk_item])
gr.Markdown(
value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ")
)
vc_input3 = gr.Audio(label="上传音频(长度小于90秒)")
vc_transform0 = gr.Number(label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0)
f0method0 = gr.Radio(
label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"),
choices=["pm", "harvest", "crepe", "rmvpe"],
value="pm",
interactive=True,
)
filter_radius0 = gr.Slider(
minimum=0,
maximum=7,
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
value=3,
step=1,
interactive=True,
)
with gr.Column():
file_index1 = gr.Textbox(
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
value="",
interactive=False,
visible=False,
)
file_index2 = gr.Dropdown(
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
choices=sorted(index_paths),
interactive=True,
)
index_rate1 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("检索特征占比"),
value=0.88,
interactive=True,
)
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
value=0,
step=1,
interactive=True,
)
rms_mix_rate0 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
value=1,
interactive=True,
)
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
value=0.33,
step=0.01,
interactive=True,
)
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
but0 = gr.Button(i18n("转换"), variant="primary")
vc_output1 = gr.Textbox(label=i18n("输出信息"))
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
but0.click(
vc.vc_single,
[
spk_item,
vc_input3,
vc_transform0,
f0_file,
f0method0,
file_index1,
file_index2,
# file_big_npy1,
index_rate1,
filter_radius0,
resample_sr0,
rms_mix_rate0,
protect0,
],
[vc_output1, vc_output2],
)
app.launch()
|