drewThomasson's picture
Update app.py
ce85940 verified
raw
history blame
4.52 kB
import gradio as gr
import torch
from TTS.api import TTS
import os
import librosa
import requests
from datetime import datetime
#import local stored models
import import_local_tts_models
# Get device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize TTS model
tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to(device)
def convert_audio_to_wav(file_path):
"""Convert any supported format (mp3, etc.) to wav using librosa"""
output_path = "temp_input.wav"
audio, sr = librosa.load(file_path, sr=None) # Load file (wav, mp3, etc.)
librosa.output.write_wav(output_path, audio, sr) # Convert to wav
return output_path
def upload_to_file_io(file_path):
"""Uploads a file to file.io and returns the temporary link"""
url = "https://file.io"
with open(file_path, 'rb') as f:
response = requests.post(url, files={"file": f})
if response.status_code == 200:
temp_link = response.json().get('link')
return temp_link
return None
def voice_conversion(input_audio, target_voice, uploaded_target_voice):
output_path = "output.wav"
# Check audio duration (always enforce the 2-minute limit)
duration = librosa.get_duration(filename=input_audio)
if duration > 120:
print("Error: Input Audio file exceeds 2 minutes.")
raise gr.Error("Error: Input Audio file exceeds 2 minutes.")
elif duration > 30:
gr.Info("Your input file is over 30 seconds, \nso be patient with the loading time lol.")
# Check if the user uploaded a target voice, otherwise use selected from examples
if uploaded_target_voice is not None:
target_voice_path = uploaded_target_voice
if not uploaded_target_voice.endswith(".wav"):
target_voice_path = convert_audio_to_wav(uploaded_target_voice)
else:
target_voice_path = os.path.join("Examples", target_voice)
if not os.path.exists(target_voice_path):
return None, "Error: Target voice file not found."
# Convert input audio to wav if necessary
if not input_audio.endswith(".wav"):
input_audio = convert_audio_to_wav(input_audio)
# Perform voice conversion
tts.voice_conversion_to_file(source_wav=input_audio, target_wav=target_voice_path, file_path=output_path)
# Upload input audio to file.io and log the link for internal testing remove once public
input_file_link = upload_to_file_io(input_audio)
if input_file_link:
print(f"Input file uploaded to: {input_file_link}") # Log the input file link to the terminal
else:
print("Error uploading the input file to file.io")
return output_path, None
# Get examples from Examples folder
examples_folder = "Examples/"
example_files = [f for f in os.listdir(examples_folder) if f.endswith(".wav")]
# Define Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("## Voice Conversion using Coqui TTS")
with gr.Row():
input_audio = gr.Audio(label="Record or Upload Your Voice Max input length of 2 minutes.", type="filepath")
target_voice = gr.Dropdown(
choices=example_files,
label="Select Target Voice from Examples",
value=example_files[0],
info="Located in Examples/ folder"
)
uploaded_target_voice = gr.Audio(
label="Or Upload Your Own Target Voice",
type="filepath"
)
with gr.Row():
play_button = gr.Button("Preview Selected Target Voice")
preview_audio = gr.Audio(label="Preview Target Voice", type="filepath")
convert_button = gr.Button("Convert Voice")
output_audio = gr.Audio(label="Converted Voice", type="filepath")
error_message = gr.Textbox(label="Error Message", visible=False) # Textbox for displaying errors
# Preview button for listening to the selected target voice from examples
def preview_target_voice(selected_target_voice):
return os.path.join(examples_folder, selected_target_voice)
play_button.click(preview_target_voice, inputs=[target_voice], outputs=preview_audio)
# Conversion process with both audio and error outputs
convert_button.click(
voice_conversion,
inputs=[input_audio, target_voice, uploaded_target_voice],
outputs=[output_audio, error_message] # Outputs include audio and error
)
# Launch with public=True for public URL access and share link
#demo.launch(share=True)
demo.queue().launch()