Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import os | |
import spaces | |
from pydub import AudioSegment | |
from typing import Tuple, Dict, List | |
from demucs.apply import apply_model | |
from demucs.separate import load_track | |
from demucs.pretrained import get_model | |
from demucs.audio import save_audio | |
device: str = "cuda" if torch.cuda.is_available() else "cpu" | |
# Define the inference function | |
def inference(audio_file: str, model_name: str, vocals: bool, drums: bool, bass: bool, other: bool, mp3: bool, mp3_bitrate: int) -> Tuple[str, gr.HTML]: | |
separator = get_model(name=model_name) | |
log_messages = [] | |
def stream_log(message): | |
log_messages.append(f"[{model_name}] {message}") | |
return gr.HTML("<pre style='margin-bottom: 0;'>" + "<br>".join(log_messages) + "</pre>") | |
yield None, stream_log("Starting separation process...") | |
yield None, stream_log(f"Loading audio file: {audio_file}") | |
# Check if audio_file is None | |
if audio_file is None: | |
yield None, stream_log("Error: No audio file provided") | |
raise gr.Error("Please upload an audio file") | |
# Load the audio file with the correct samplerate and audio channels | |
try: | |
wav, sr = load_track(audio_file, samplerate=separator.samplerate, audio_channels=2) | |
except Exception as e: | |
yield None, stream_log(f"Error loading audio file: {str(e)}") | |
raise gr.Error(f"Failed to load audio file: {str(e)}") | |
# Check the number of channels and adjust if necessary | |
if wav.dim() == 1: | |
wav = wav.unsqueeze(0) # Add channel dimension if mono | |
if wav.shape[0] == 1: | |
wav = wav.repeat(2, 1) # If mono, duplicate to stereo | |
elif wav.shape[0] > 2: | |
wav = wav[:2] # If more than 2 channels, keep only the first two | |
wav = wav.to(device) | |
ref = wav.mean(0) | |
wav = (wav - ref.view(1, -1)) | |
yield None, stream_log("Audio loaded successfully. Applying model...") | |
# Use apply_model as a standalone function | |
try: | |
result = apply_model(separator, wav.to(device), device=device) | |
yield None, stream_log(f"Model application result type: {type(result)}") | |
yield None, stream_log(f"Model application result shape: {result.shape if hasattr(result, 'shape') else 'N/A'}") | |
if isinstance(result, tuple) and len(result) == 2: | |
sources, _ = result | |
elif isinstance(result, torch.Tensor): | |
sources = result | |
else: | |
raise ValueError(f"Unexpected result type from apply_model: {type(result)}") | |
yield None, stream_log(f"Sources shape: {sources.shape}") | |
except ValueError as e: | |
yield None, stream_log(f"Error applying model: {str(e)}") | |
yield None, stream_log(f"Separator sources: {separator.sources}") | |
yield None, stream_log(f"WAV shape: {wav.shape}") | |
yield None, stream_log(f"Separator model: {separator.__class__.__name__}") | |
yield None, stream_log(f"Separator config: {separator.config}") | |
raise gr.Error(f"Failed to apply model: {str(e)}. This might be due to incompatible audio format or model configuration.") | |
except Exception as e: | |
yield None, stream_log(f"Unexpected error applying model: {str(e)}") | |
raise gr.Error(f"An unexpected error occurred while applying the model: {str(e)}") | |
# Process the sources | |
sources = [source * ref.view(1, -1) + ref.view(1, -1) for source in sources] | |
yield None, stream_log("Model applied. Processing stems...") | |
output_dir: str = os.path.join("separated", model_name, os.path.splitext(os.path.basename(audio_file))[0]) | |
os.makedirs(output_dir, exist_ok=True) | |
stems: Dict[str, str] = {} | |
for stem, source in zip(separator.sources, sources): | |
stem_path: str = os.path.join(output_dir, f"{stem}.wav") | |
save_audio(source, stem_path, separator.samplerate) | |
stems[stem] = stem_path | |
yield None, stream_log(f"Saved {stem} stem") | |
selected_stems: List[str] = [stems[stem] for stem, include in zip(["vocals", "drums", "bass", "other"], [vocals, drums, bass, other]) if include] | |
if not selected_stems: | |
raise gr.Error("Please select at least one stem to mix.") | |
output_file: str = os.path.join(output_dir, "mixed.wav") | |
yield None, stream_log("Mixing selected stems...") | |
if len(selected_stems) == 1: | |
os.rename(selected_stems[0], output_file) | |
else: | |
mixed_audio: AudioSegment = AudioSegment.empty() | |
for stem_path in selected_stems: | |
mixed_audio += AudioSegment.from_wav(stem_path) | |
mixed_audio.export(output_file, format="wav") | |
if mp3: | |
yield None, stream_log(f"Converting to MP3 (bitrate: {mp3_bitrate}k)...") | |
mp3_output_file: str = os.path.splitext(output_file)[0] + ".mp3" | |
mixed_audio.export(mp3_output_file, format="mp3", bitrate=str(mp3_bitrate) + "k") | |
output_file = mp3_output_file | |
yield None, stream_log("Process completed successfully!") | |
yield output_file, gr.HTML("<pre style='color: green;'>Separation and mixing completed successfully!</pre>") | |
# Define the Gradio interface | |
with gr.Blocks() as iface: | |
gr.Markdown("# Demucs Music Source Separation and Mixing") | |
gr.Markdown("Separate vocals, drums, bass, and other instruments from your music using Demucs and mix the selected stems.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
audio_input = gr.Audio(type="filepath", label="Upload Audio File") | |
model_dropdown = gr.Dropdown( | |
["htdemucs", "htdemucs_ft", "htdemucs_6s", "hdemucs_mmi", "mdx", "mdx_extra", "mdx_q", "mdx_extra_q"], | |
label="Model Name", | |
value="htdemucs_ft" | |
) | |
with gr.Row(): | |
vocals_checkbox = gr.Checkbox(label="Vocals", value=True) | |
drums_checkbox = gr.Checkbox(label="Drums", value=True) | |
with gr.Row(): | |
bass_checkbox = gr.Checkbox(label="Bass", value=True) | |
other_checkbox = gr.Checkbox(label="Other", value=True) | |
mp3_checkbox = gr.Checkbox(label="Save as MP3", value=False) | |
mp3_bitrate = gr.Slider(128, 320, step=32, label="MP3 Bitrate", visible=False) | |
submit_btn = gr.Button("Process", variant="primary") | |
with gr.Column(scale=1): | |
output_audio = gr.Audio(type="filepath", label="Processed Audio") | |
separation_log = gr.HTML() | |
submit_btn.click( | |
fn=inference, | |
inputs=[audio_input, model_dropdown, vocals_checkbox, drums_checkbox, bass_checkbox, other_checkbox, mp3_checkbox, mp3_bitrate], | |
outputs=[output_audio, separation_log] | |
) | |
mp3_checkbox.change( | |
fn=lambda mp3: gr.update(visible=mp3), | |
inputs=mp3_checkbox, | |
outputs=mp3_bitrate | |
) | |
# Launch the Gradio interface | |
iface.launch() | |