Spaces:
vztu
/
Runtime error

File size: 6,860 Bytes
feb2918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
r"""CLIP-IQA metric, proposed by

Exploring CLIP for Assessing the Look and Feel of Images.
Jianyi Wang Kelvin C.K. Chan Chen Change Loy.
AAAI 2023.

Ref url: https://github.com/IceClear/CLIP-IQA
Re-implmented by: Chaofeng Chen (https://github.com/chaofengc) with the following modification:
    - We assemble multiple prompts to improve the results of clipiqa model.

"""
import torch
import torch.nn as nn
import sys

import pyiqa
from pyiqa.archs.arch_util import load_file_from_url
from pyiqa.archs.arch_util import load_pretrained_network

import clip
from .constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from .clip_model import load


default_model_urls = {
    'clipiqa+': 'https://github.com/chaofengc/IQA-PyTorch/releases/download/v0.1-weights/CLIP-IQA+_learned_prompts-603f3273.pth',
    'clipiqa+_rn50_512': 'https://github.com/chaofengc/IQA-PyTorch/releases/download/v0.1-weights/CLIPIQA+_RN50_512-89f5d940.pth',
    'clipiqa+_vitL14_512': 'https://github.com/chaofengc/IQA-PyTorch/releases/download/v0.1-weights/CLIPIQA+_ViTL14_512-e66488f2.pth',
}


class PromptLearner(nn.Module):
    """
    Disclaimer:
        This implementation follows exactly the official codes in: https://github.com/IceClear/CLIP-IQA. We have no idea why some tricks are implemented like this, which include
            1. Using n_ctx prefix characters "X"
            2. Appending extra "." at the end
            3. Insert the original text embedding at the middle
    """

    def __init__(self, clip_model, n_ctx=16) -> None:
        super().__init__()

        # For the following codes about prompts, we follow the official codes to get the same results
        prompt_prefix = " ".join(["X"] * n_ctx) + ' '
        init_prompts = [prompt_prefix + 'Good photo..', prompt_prefix + 'Bad photo..']
        with torch.no_grad():
            txt_token = clip.tokenize(init_prompts)
            self.tokenized_prompts = txt_token
            init_embedding = clip_model.token_embedding(txt_token)

        init_ctx = init_embedding[:, 1: 1 + n_ctx]
        self.ctx = nn.Parameter(init_ctx)

        self.n_ctx = n_ctx

        self.n_cls = len(init_prompts)
        self.name_lens = [3, 3]  # hard coded length, which does not include the extra "." at the end

        self.register_buffer("token_prefix", init_embedding[:, :1, :])  # SOS
        self.register_buffer("token_suffix", init_embedding[:, 1 + n_ctx:, :])  # CLS, EOS

    def get_prompts_with_middel_class(self,):

        ctx = self.ctx.to(self.token_prefix)
        if ctx.dim() == 2:
            ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)

        half_n_ctx = self.n_ctx // 2
        prompts = []
        for i in range(self.n_cls):
            name_len = self.name_lens[i]
            prefix_i = self.token_prefix[i: i + 1, :, :]
            class_i = self.token_suffix[i: i + 1, :name_len, :]
            suffix_i = self.token_suffix[i: i + 1, name_len:, :]
            ctx_i_half1 = ctx[i: i + 1, :half_n_ctx, :]
            ctx_i_half2 = ctx[i: i + 1, half_n_ctx:, :]
            prompt = torch.cat(
                [
                    prefix_i,     # (1, 1, dim)
                    ctx_i_half1,  # (1, n_ctx//2, dim)
                    class_i,      # (1, name_len, dim)
                    ctx_i_half2,  # (1, n_ctx//2, dim)
                    suffix_i,     # (1, *, dim)
                ],
                dim=1,
            )
            prompts.append(prompt)
        prompts = torch.cat(prompts, dim=0)
        return prompts

    def forward(self, clip_model):
        prompts = self.get_prompts_with_middel_class()
        # self.get_prompts_with_middel_class
        x = prompts + clip_model.positional_embedding.type(clip_model.dtype)
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = clip_model.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = clip_model.ln_final(x).type(clip_model.dtype)

        # x.shape = [batch_size, n_ctx, transformer.width]
        # take features from the eot embedding (eot_token is the highest number in each sequence)
        x = x[torch.arange(x.shape[0]), self.tokenized_prompts.argmax(dim=-1)] @ clip_model.text_projection

        return x


class CLIPIQA(nn.Module):
    def __init__(self,
                 model_type='clipiqa+_vitL14_512',
                 backbone='ViT-L/14',
                 pretrained=True,
                 pos_embedding=False,
                 ) -> None:
        super().__init__()

        self.clip_model = [load(backbone, 'cpu')]  # avoid saving clip weights
        # Different from original paper, we assemble multiple prompts to improve performance
        self.prompt_pairs = clip.tokenize([
            'Good image', 'bad image',
            'Sharp image', 'blurry image',
            'sharp edges', 'blurry edges',
            'High resolution image', 'low resolution image',
            'Noise-free image', 'noisy image',
        ])

        self.model_type = model_type
        self.pos_embedding = pos_embedding
        if 'clipiqa+' in model_type:
            self.prompt_learner = PromptLearner(self.clip_model[0])

        self.default_mean = torch.Tensor(OPENAI_CLIP_MEAN).view(1, 3, 1, 1)
        self.default_std = torch.Tensor(OPENAI_CLIP_STD).view(1, 3, 1, 1)

        for p in self.clip_model[0].parameters():
            p.requires_grad = False
        
        if pretrained and 'clipiqa+' in model_type:
            if model_type == 'clipiqa+' and backbone == 'RN50':
                self.prompt_learner.ctx.data = torch.load(load_file_from_url(default_model_urls['clipiqa+']))
            elif model_type in default_model_urls.keys():
                load_pretrained_network(self, default_model_urls[model_type], True, 'params')
            else:
                raise(f'No pretrained model for {model_type}')
    

    def forward(self, x, multi=False, layer=-1):
        # no need to preprocess image here
        # as already image is already preprocessed
        # x = (x - self.default_mean.to(x)) / self.default_std.to(x)
        clip_model = self.clip_model[0].to(x)

        if self.model_type == 'clipiqa':
            prompts = self.prompt_pairs.to(x.device)
            logits_per_image, logits_per_text, image_feature, token_feature = clip_model(x, prompts, pos_embedding=self.pos_embedding)
        elif 'clipiqa+' in self.model_type:
            # learned_prompt_feature = self.prompt_learner(clip_model)
            learned_prompt_feature = 0
            logits_per_image, logits_per_text, image_feature, token_feature = clip_model(
                x, None, text_features=learned_prompt_feature,  pos_embedding=self.pos_embedding)

        # probs = logits_per_image.reshape(logits_per_image.shape[0], -1, 2).softmax(dim=-1)

        # return probs[..., 0].mean(dim=1, keepdim=True), image_feature
        return image_feature, token_feature