|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from timm.models.layers import trunc_normal_, DropPath |
|
from timm.models.registry import register_model |
|
from .clipiqa_arch import CLIPIQA |
|
|
|
|
|
class GRN(nn.Module): |
|
""" GRN (Global Response Normalization) layer |
|
""" |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) |
|
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) |
|
|
|
def forward(self, x): |
|
Gx = torch.norm(x, p=2, dim=(1,2), keepdim=True) |
|
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) |
|
return self.gamma * (x * Nx) + self.beta + x |
|
|
|
class Block(nn.Module): |
|
r""" ConvNeXt Block. There are two equivalent implementations: |
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) |
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back |
|
We use (2) as we find it slightly faster in PyTorch |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
drop_path (float): Stochastic depth rate. Default: 0.0 |
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. |
|
""" |
|
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6): |
|
super().__init__() |
|
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) |
|
self.norm = LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear(dim, 4 * dim) |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(4 * dim, dim) |
|
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), |
|
requires_grad=True) if layer_scale_init_value > 0 else None |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
input = x |
|
x = self.dwconv(x) |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.permute(0, 3, 1, 2) |
|
|
|
x = input + self.drop_path(x) |
|
return x |
|
|
|
class ConvNeXt(nn.Module): |
|
r""" ConvNeXt |
|
A PyTorch impl of : `A ConvNet for the 2020s` - |
|
https://arxiv.org/pdf/2201.03545.pdf |
|
Args: |
|
in_chans (int): Number of input image channels. Default: 3 |
|
num_classes (int): Number of classes for classification head. Default: 1000 |
|
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] |
|
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] |
|
drop_path_rate (float): Stochastic depth rate. Default: 0. |
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. |
|
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. |
|
""" |
|
def __init__(self, in_chans=3, num_classes=1000, |
|
depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., |
|
layer_scale_init_value=1e-6, head_init_scale=1., |
|
): |
|
super().__init__() |
|
|
|
self.downsample_layers = nn.ModuleList() |
|
stem = nn.Sequential( |
|
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), |
|
LayerNorm(dims[0], eps=1e-6, data_format="channels_first") |
|
) |
|
self.downsample_layers.append(stem) |
|
for i in range(3): |
|
downsample_layer = nn.Sequential( |
|
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), |
|
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), |
|
) |
|
self.downsample_layers.append(downsample_layer) |
|
|
|
self.stages = nn.ModuleList() |
|
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
for i in range(4): |
|
stage = nn.Sequential( |
|
*[Block(dim=dims[i], drop_path=dp_rates[cur + j], |
|
layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] |
|
) |
|
self.stages.append(stage) |
|
cur += depths[i] |
|
|
|
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) |
|
self.head = nn.Linear(dims[-1], num_classes) |
|
|
|
self.apply(self._init_weights) |
|
self.head.weight.data.mul_(head_init_scale) |
|
self.head.bias.data.mul_(head_init_scale) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv2d, nn.Linear)): |
|
trunc_normal_(m.weight, std=.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward_features(self, x): |
|
for i in range(4): |
|
x = self.downsample_layers[i](x) |
|
x = self.stages[i](x) |
|
return self.norm(x.mean([-2, -1])) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.head(x) |
|
return x |
|
|
|
class LayerNorm(nn.Module): |
|
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. |
|
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with |
|
shape (batch_size, height, width, channels) while channels_first corresponds to inputs |
|
with shape (batch_size, channels, height, width). |
|
""" |
|
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.bias = nn.Parameter(torch.zeros(normalized_shape)) |
|
self.eps = eps |
|
self.data_format = data_format |
|
if self.data_format not in ["channels_last", "channels_first"]: |
|
raise NotImplementedError |
|
self.normalized_shape = (normalized_shape, ) |
|
|
|
def forward(self, x): |
|
if self.data_format == "channels_last": |
|
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
elif self.data_format == "channels_first": |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
if len(x.shape) == 4: |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
elif len(x.shape) == 5: |
|
x = self.weight[:, None, None, None] * x + self.bias[:, None, None, None] |
|
return x |
|
|
|
|
|
class Block3D(nn.Module): |
|
r""" ConvNeXt Block. There are two equivalent implementations: |
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) |
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back |
|
We use (2) as we find it slightly faster in PyTorch |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
drop_path (float): Stochastic depth rate. Default: 0.0 |
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. |
|
""" |
|
def __init__(self, dim, drop_path=0., inflate_len=3, layer_scale_init_value=1e-6): |
|
super().__init__() |
|
self.dwconv = nn.Conv3d(dim, dim, kernel_size=(inflate_len,7,7), padding=(inflate_len // 2,3,3), groups=dim) |
|
self.norm = LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear(dim, 4 * dim) |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(4 * dim, dim) |
|
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), |
|
requires_grad=True) if layer_scale_init_value > 0 else None |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
input = x |
|
x = self.dwconv(x) |
|
x = x.permute(0, 2, 3, 4, 1) |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.permute(0, 4, 1, 2, 3) |
|
|
|
x = input + self.drop_path(x) |
|
return x |
|
|
|
class BlockV2(nn.Module): |
|
""" ConvNeXtV2 Block. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
drop_path (float): Stochastic depth rate. Default: 0.0 |
|
""" |
|
def __init__(self, dim, drop_path=0.): |
|
super().__init__() |
|
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) |
|
self.norm = LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear(dim, 4 * dim) |
|
self.act = nn.GELU() |
|
self.grn = GRN(4 * dim) |
|
self.pwconv2 = nn.Linear(4 * dim, dim) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
input = x |
|
x = self.dwconv(x) |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.grn(x) |
|
x = self.pwconv2(x) |
|
x = x.permute(0, 3, 1, 2) |
|
|
|
x = input + self.drop_path(x) |
|
return x |
|
|
|
class BlockV23D(nn.Module): |
|
""" ConvNeXtV2 Block. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
drop_path (float): Stochastic depth rate. Default: 0.0 |
|
""" |
|
def __init__(self, dim, drop_path=0., inflate_len=3,): |
|
super().__init__() |
|
self.dwconv = nn.Conv3d(dim, dim, kernel_size=(inflate_len,7,7), padding=(inflate_len // 2,3,3), groups=dim) |
|
self.norm = LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear(dim, 4 * dim) |
|
self.act = nn.GELU() |
|
self.grn = GRN(4 * dim) |
|
self.pwconv2 = nn.Linear(4 * dim, dim) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
input = x |
|
x = self.dwconv(x) |
|
x = x.permute(0, 2, 3, 4, 1) |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.grn(x) |
|
x = self.pwconv2(x) |
|
x = x.permute(0, 4, 1, 2, 3) |
|
|
|
x = input + self.drop_path(x) |
|
return x |
|
|
|
class ConvNeXtV2(nn.Module): |
|
""" ConvNeXt V2 |
|
|
|
Args: |
|
in_chans (int): Number of input image channels. Default: 3 |
|
num_classes (int): Number of classes for classification head. Default: 1000 |
|
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] |
|
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] |
|
drop_path_rate (float): Stochastic depth rate. Default: 0. |
|
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. |
|
""" |
|
def __init__(self, in_chans=3, num_classes=1000, |
|
depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], |
|
drop_path_rate=0., head_init_scale=1. |
|
): |
|
super().__init__() |
|
self.depths = depths |
|
self.downsample_layers = nn.ModuleList() |
|
stem = nn.Sequential( |
|
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), |
|
LayerNorm(dims[0], eps=1e-6, data_format="channels_first") |
|
) |
|
self.downsample_layers.append(stem) |
|
for i in range(3): |
|
downsample_layer = nn.Sequential( |
|
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), |
|
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), |
|
) |
|
self.downsample_layers.append(downsample_layer) |
|
|
|
self.stages = nn.ModuleList() |
|
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
for i in range(4): |
|
stage = nn.Sequential( |
|
*[BlockV2(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])] |
|
) |
|
self.stages.append(stage) |
|
cur += depths[i] |
|
|
|
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) |
|
self.head = nn.Linear(dims[-1], num_classes) |
|
|
|
self.apply(self._init_weights) |
|
self.head.weight.data.mul_(head_init_scale) |
|
self.head.bias.data.mul_(head_init_scale) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv2d, nn.Linear)): |
|
trunc_normal_(m.weight, std=.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward_features(self, x): |
|
for i in range(4): |
|
x = self.downsample_layers[i](x) |
|
x = self.stages[i](x) |
|
return self.norm(x.mean([-2, -1])) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.head(x) |
|
return x |
|
|
|
def convnextv2_atto(**kwargs): |
|
model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[40, 80, 160, 320], **kwargs) |
|
return model |
|
|
|
def convnextv2_femto(**kwargs): |
|
model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[48, 96, 192, 384], **kwargs) |
|
return model |
|
|
|
def convnext_pico(**kwargs): |
|
model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[64, 128, 256, 512], **kwargs) |
|
return model |
|
|
|
def convnextv2_nano(**kwargs): |
|
model = ConvNeXtV2(depths=[2, 2, 8, 2], dims=[80, 160, 320, 640], **kwargs) |
|
return model |
|
|
|
def convnextv2_tiny(**kwargs): |
|
model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) |
|
return model |
|
|
|
def convnextv2_base(**kwargs): |
|
model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) |
|
return model |
|
|
|
def convnextv2_large(**kwargs): |
|
model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) |
|
return model |
|
|
|
def convnextv2_huge(**kwargs): |
|
model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], **kwargs) |
|
return model |
|
|
|
class ConvNeXt3D(nn.Module): |
|
r""" ConvNeXt |
|
A PyTorch impl of : `A ConvNet for the 2020s` - |
|
https://arxiv.org/pdf/2201.03545.pdf |
|
Args: |
|
in_chans (int): Number of input image channels. Default: 3 |
|
num_classes (int): Number of classes for classification head. Default: 1000 |
|
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] |
|
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] |
|
drop_path_rate (float): Stochastic depth rate. Default: 0. |
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. |
|
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. |
|
""" |
|
def __init__(self, in_chans=3, num_classes=1000, |
|
inflate_strategy='131', |
|
depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., |
|
layer_scale_init_value=1e-6, head_init_scale=1., |
|
): |
|
super().__init__() |
|
|
|
self.downsample_layers = nn.ModuleList() |
|
stem = nn.Sequential( |
|
nn.Conv3d(in_chans, dims[0], kernel_size=(2,4,4), stride=(2,4,4)), |
|
LayerNorm(dims[0], eps=1e-6, data_format="channels_first") |
|
) |
|
self.downsample_layers.append(stem) |
|
for i in range(3): |
|
downsample_layer = nn.Sequential( |
|
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), |
|
nn.Conv3d(dims[i], dims[i+1], kernel_size=(1,2,2), stride=(1,2,2)), |
|
) |
|
self.downsample_layers.append(downsample_layer) |
|
|
|
self.stages = nn.ModuleList() |
|
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
for i in range(4): |
|
stage = nn.Sequential( |
|
*[Block3D(dim=dims[i], inflate_len=int(inflate_strategy[j%len(inflate_strategy)]), |
|
drop_path=dp_rates[cur + j], |
|
layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] |
|
) |
|
self.stages.append(stage) |
|
cur += depths[i] |
|
|
|
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def inflate_weights(self, s_state_dict): |
|
t_state_dict = self.state_dict() |
|
from collections import OrderedDict |
|
for key in t_state_dict.keys(): |
|
if key not in s_state_dict: |
|
print(key) |
|
continue |
|
if t_state_dict[key].shape != s_state_dict[key].shape: |
|
t = t_state_dict[key].shape[2] |
|
s_state_dict[key] = s_state_dict[key].unsqueeze(2).repeat(1,1,t,1,1) / t |
|
self.load_state_dict(s_state_dict, strict=False) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv3d, nn.Linear)): |
|
trunc_normal_(m.weight, std=.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward_features(self, x, return_spatial=False, multi=False, layer=-1): |
|
if multi: |
|
xs = [] |
|
for i in range(4): |
|
x = self.downsample_layers[i](x) |
|
x = self.stages[i](x) |
|
if multi: |
|
xs.append(x) |
|
if return_spatial: |
|
if multi: |
|
shape = xs[-1].shape[2:] |
|
return torch.cat([F.interpolate(x,size=shape, mode="trilinear") for x in xs[:-1]], 1) |
|
elif layer > -1: |
|
return xs[layer] |
|
else: |
|
return self.norm(x.permute(0, 2, 3, 4, 1)).permute(0, 4, 1, 2, 3) |
|
return self.norm(x.mean([-3, -2, -1])) |
|
|
|
def forward(self, x, multi=False, layer=-1): |
|
x = self.forward_features(x, True, multi=multi, layer=layer) |
|
return x |
|
|
|
|
|
class ConvNeXtV23D(nn.Module): |
|
""" ConvNeXt V2 |
|
|
|
Args: |
|
in_chans (int): Number of input image channels. Default: 3 |
|
num_classes (int): Number of classes for classification head. Default: 1000 |
|
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] |
|
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] |
|
drop_path_rate (float): Stochastic depth rate. Default: 0. |
|
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. |
|
""" |
|
def __init__(self, in_chans=3, num_classes=1000, |
|
inflate_strategy='131', |
|
depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], |
|
drop_path_rate=0., head_init_scale=1. |
|
): |
|
super().__init__() |
|
self.depths = depths |
|
self.downsample_layers = nn.ModuleList() |
|
stem = nn.Sequential( |
|
nn.Conv3d(in_chans, dims[0], kernel_size=(2,4,4), stride=(2,4,4)), |
|
LayerNorm(dims[0], eps=1e-6, data_format="channels_first") |
|
) |
|
self.downsample_layers.append(stem) |
|
for i in range(3): |
|
downsample_layer = nn.Sequential( |
|
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), |
|
nn.Conv3d(dims[i], dims[i+1], kernel_size=(1,2,2), stride=(1,2,2)), |
|
) |
|
self.downsample_layers.append(downsample_layer) |
|
|
|
self.stages = nn.ModuleList() |
|
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
for i in range(4): |
|
stage = nn.Sequential( |
|
*[BlockV23D(dim=dims[i], drop_path=dp_rates[cur + j], |
|
inflate_len=int(inflate_strategy[j%len(inflate_strategy)]), |
|
) for j in range(depths[i])] |
|
) |
|
self.stages.append(stage) |
|
cur += depths[i] |
|
|
|
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) |
|
self.head = nn.Linear(dims[-1], num_classes) |
|
|
|
self.apply(self._init_weights) |
|
self.head.weight.data.mul_(head_init_scale) |
|
self.head.bias.data.mul_(head_init_scale) |
|
|
|
def inflate_weights(self, pretrained_path): |
|
t_state_dict = self.state_dict() |
|
s_state_dict = torch.load(pretrained_path)["model"] |
|
from collections import OrderedDict |
|
for key in t_state_dict.keys(): |
|
if key not in s_state_dict: |
|
print(key) |
|
continue |
|
if t_state_dict[key].shape != s_state_dict[key].shape: |
|
print(t_state_dict[key].shape, s_state_dict[key].shape) |
|
t = t_state_dict[key].shape[2] |
|
s_state_dict[key] = s_state_dict[key].unsqueeze(2).repeat(1,1,t,1,1) / t |
|
self.load_state_dict(s_state_dict, strict=False) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv3d, nn.Linear)): |
|
trunc_normal_(m.weight, std=.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward_features(self, x, return_spatial=False, multi=False, layer=-1): |
|
if multi: |
|
xs = [] |
|
for i in range(4): |
|
x = self.downsample_layers[i](x) |
|
x = self.stages[i](x) |
|
if multi: |
|
xs.append(x) |
|
if return_spatial: |
|
if multi: |
|
shape = xs[-1].shape[2:] |
|
return torch.cat([F.interpolate(x,size=shape, mode="trilinear") for x in xs[:-1]], 1) |
|
elif layer > -1: |
|
return xs[layer] |
|
else: |
|
return self.norm(x.permute(0, 2, 3, 4, 1)).permute(0, 4, 1, 2, 3) |
|
return self.norm(x.mean([-3, -2, -1])) |
|
|
|
def forward(self, x, multi=False, layer=-1): |
|
x = self.forward_features(x, True, multi=multi, layer=layer) |
|
return x |
|
|
|
|
|
model_urls = { |
|
"convnext_tiny_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth", |
|
"convnext_small_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth", |
|
"convnext_base_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth", |
|
"convnext_large_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth", |
|
"convnext_tiny_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth", |
|
"convnext_small_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth", |
|
"convnext_base_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", |
|
"convnext_large_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", |
|
"convnext_xlarge_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", |
|
} |
|
|
|
def convnext_tiny(pretrained=False,in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) |
|
if pretrained: |
|
url = model_urls['convnext_tiny_22k'] if in_22k else model_urls['convnext_tiny_1k'] |
|
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True) |
|
model.load_state_dict(checkpoint["model"]) |
|
return model |
|
|
|
def convnext_small(pretrained=False,in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs) |
|
if pretrained: |
|
url = model_urls['convnext_small_22k'] if in_22k else model_urls['convnext_small_1k'] |
|
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") |
|
model.load_state_dict(checkpoint["model"]) |
|
return model |
|
|
|
def convnext_base(pretrained=False, in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) |
|
if pretrained: |
|
url = model_urls['convnext_base_22k'] if in_22k else model_urls['convnext_base_1k'] |
|
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") |
|
model.load_state_dict(checkpoint["model"]) |
|
return model |
|
|
|
|
|
def convnext_large(pretrained=False, in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) |
|
if pretrained: |
|
url = model_urls['convnext_large_22k'] if in_22k else model_urls['convnext_large_1k'] |
|
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") |
|
model.load_state_dict(checkpoint["model"]) |
|
return model |
|
|
|
def convnext_xlarge(pretrained=False, in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs) |
|
if pretrained: |
|
assert in_22k, "only ImageNet-22K pre-trained ConvNeXt-XL is available; please set in_22k=True" |
|
url = model_urls['convnext_xlarge_22k'] |
|
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") |
|
model.load_state_dict(checkpoint["model"]) |
|
|
|
return model |
|
|
|
def convnext_3d_tiny(pretrained=False, in_22k=False, **kwargs): |
|
print("Using Imagenet 22K pretrain", in_22k) |
|
model = ConvNeXt3D(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) |
|
if pretrained: |
|
url = model_urls['convnext_tiny_22k'] if in_22k else model_urls['convnext_tiny_1k'] |
|
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True) |
|
model.inflate_weights(checkpoint["model"]) |
|
return model |
|
|
|
def convnext_3d_small(pretrained=False, in_22k=False, **kwargs): |
|
model = ConvNeXt3D(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs) |
|
if pretrained: |
|
url = model_urls['convnext_small_22k'] if in_22k else model_urls['convnext_small_1k'] |
|
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True) |
|
model.inflate_weights(checkpoint["model"]) |
|
|
|
return model |
|
|
|
def convnextv2_3d_atto(**kwargs): |
|
model = ConvNeXtV23D(depths=[2, 2, 6, 2], dims=[40, 80, 160, 320], **kwargs) |
|
|
|
return model |
|
|
|
def convnextv2_3d_femto(pretrained="../pretrained/convnextv2_femto_1k_224_ema.pt", **kwargs): |
|
model = ConvNeXtV23D(depths=[2, 2, 6, 2], dims=[48, 96, 192, 384], **kwargs) |
|
|
|
return model |
|
|
|
def convnextv2_3d_pico(pretrained="../pretrained/convnextv2_pico_1k_224_ema.pt", **kwargs): |
|
model = ConvNeXtV23D(depths=[2, 2, 6, 2], dims=[64, 128, 256, 512], **kwargs) |
|
|
|
return model |
|
|
|
def convnextv2_3d_nano(pretrained="../pretrained/convnextv2_nano_1k_224_ema.pt", **kwargs): |
|
model = ConvNeXtV23D(depths=[2, 2, 8, 2], dims=[80, 160, 320, 640], **kwargs) |
|
|
|
return model |
|
|
|
def convnextv2_tiny(**kwargs): |
|
model = ConvNeXtV23D(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) |
|
return model |
|
|
|
def convnextv2_base(**kwargs): |
|
model = ConvNeXtV23D(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) |
|
return model |
|
|
|
def convnextv2_large(**kwargs): |
|
model = ConvNeXtV23D(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) |
|
return model |
|
|
|
def convnextv2_huge(**kwargs): |
|
model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], **kwargs) |
|
return model |
|
|
|
def clip_vitL14(pretrained, **kwargs): |
|
model = CLIPIQA(model_type='clipiqa+_vitL14_512', backbone='ViT-L/14', pretrained=pretrained) |
|
return model |
|
|
|
if __name__ == "__main__": |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model = convnext_3d_tiny(True).to(device) |
|
print(model) |
|
from thop import profile |
|
print(profile(model, (torch.randn(4,3,32,224,224).to(device),))[0] / 1e9) |
|
|
|
|