File size: 2,346 Bytes
5273d83
 
 
 
 
 
 
 
 
 
 
 
 
f0af1c3
5273d83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os

import src.constants as constants_utils
import src.langchain_utils as langchain_utils
import src.weather as weather_utils
import src.mandi_price as mandi_utils
import src.translator as translator_utils
import src.web_crawler as web_crawler_utils

import logging
logging.basicConfig(
    format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)
logger = logging.getLogger(__name__)

import warnings
warnings.filterwarnings('ignore')



class KKMS_KSSW:
    def __init__(self):
        self.index_type = constants_utils.INDEX_TYPE
        self.load_from_existing_index_store = constants_utils.LOAD_FROM_EXISTING_INDEX_STORE

        # Instantiate langchain_utils class object
        self.langchain_utils_obj = langchain_utils.LANGCHAIN_UTILS(
            index_type=self.index_type,
            load_from_existing_index_store=self.load_from_existing_index_store
        )
        # Instantiate Mandi Price utils class object
        self.mandi_utils_obj = mandi_utils.MANDI_PRICE()
        # Instantiate Weather class object
        self.weather_utils_obj = weather_utils.WEATHER()
        # Instantiate translator_utils class object
        self.translator_utils_obj = translator_utils.TRANSLATOR()



    # Initialize index (vector store)
    def load_create_index(self):
        logger.info(f"Load/Create index")
        self.langchain_utils_obj.load_create_index()


    # Upload data and update the index
    def upload_data(
        self,
        doc_type,
        files_or_urls,
        index_category
    ):
        logger.info(f"Uploading data")
        self.langchain_utils_obj.upload_data(
            doc_type=doc_type,
            files_or_urls=files_or_urls,
            index_category=index_category
        )


    # Define query on index to retrieve the most relevant top K documents from the vector store
    def query(
        self,
        question,
        question_category
    ):
        '''
            Args:
                mode: can be any of [default, embedding]
                response_mode: can be any of [default, compact, tree_summarize]
        '''
        logger.info(f"Querying from index/vector store")
        
        return self.langchain_utils_obj.query(
            question=question,
            question_category=question_category
        )