Spaces:
Runtime error
Runtime error
import os | |
import re | |
import pandas as pd | |
from pathlib import Path | |
import glob | |
from llama_index import GPTVectorStoreIndex, download_loader, SimpleDirectoryReader, SimpleWebPageReader | |
from langchain.document_loaders import PyPDFLoader, TextLoader | |
from langchain.agents import initialize_agent, Tool | |
from langchain.llms import OpenAI | |
from langchain.chains.conversation.memory import ConversationBufferMemory | |
from langchain.docstore.document import Document | |
import src.utils as utils | |
import logging | |
logging.basicConfig( | |
format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S" | |
) | |
logger = logging.getLogger(__name__) | |
import warnings | |
warnings.filterwarnings('ignore') | |
class DATA_LOADER: | |
def __init__(self): | |
# Instantiate UTILS class object | |
self.utils_obj = utils.UTILS() | |
def load_documents_from_urls(self, urls=[], doc_type='urls'): | |
url_documents = self.load_document(doc_type=doc_type, urls=urls) | |
return url_documents | |
def load_documents_from_pdf(self, doc_filepath='', urls=[], doc_type='pdf'): | |
if doc_type == 'pdf': | |
pdf_documents = self.load_document(doc_type=doc_type, doc_filepath=doc_filepath) | |
elif doc_type == 'online_pdf': | |
pdf_documents = self.load_document(doc_type=doc_type, urls=urls) | |
return pdf_documents | |
def load_documents_from_directory(self, doc_filepath='', doc_type='directory'): | |
doc_documents = self.load_document(doc_type=doc_type, doc_filepath=doc_filepath) | |
return doc_documents | |
def load_documents_from_text(self, doc_filepath='', doc_type='textfile'): | |
text_documents = self.load_document(doc_type=doc_type, doc_filepath=doc_filepath) | |
return text_documents | |
def pdf_loader(self, filepath): | |
loader = PyPDFLoader(filepath) | |
return loader.load_and_split() | |
def text_loader(self, filepath): | |
loader = TextLoader(filepath) | |
return loader.load() | |
def load_document(self, | |
doc_type='pdf', | |
doc_filepath='', | |
urls=[] | |
): | |
logger.info(f'Loading {doc_type} in raw format from: {doc_filepath}') | |
documents = [] | |
# Validation checks | |
if doc_type in ['directory', 'pdf', 'textfile']: | |
if not os.path.exists(doc_filepath): | |
logger.warning(f"{doc_filepath} does not exist, nothing can be loaded!") | |
return documents | |
elif doc_type in ['online_pdf', 'urls']: | |
if len(urls) == 0: | |
logger.warning(f"URLs list empty, nothing can be loaded!") | |
return documents | |
######### Load documents ######### | |
# Load PDF | |
if doc_type == 'pdf': | |
# Load multiple PDFs from directory | |
if os.path.isdir(doc_filepath): | |
pdfs = glob.glob(f"{doc_filepath}/*.pdf") | |
logger.info(f'Total PDF files to load: {len(pdfs)}') | |
for pdf in pdfs: | |
documents.extend(self.pdf_loader(pdf)) | |
# Loading from a single PDF file | |
elif os.path.isfile(doc_filepath) and doc_filepath.endswith('.pdf'): | |
documents.extend(self.pdf_loader(doc_filepath)) | |
# Load PDFs from online (urls). Can read multiple PDFs from multiple URLs in one-shot | |
elif doc_type == 'online_pdf': | |
logger.info(f'URLs to load Online PDFs are from: {urls}') | |
valid_urls = self.utils_obj.validate_url_format( | |
urls=urls, | |
url_type=doc_type | |
) | |
for url in valid_urls: | |
# Load and split PDF pages per document | |
documents.extend(self.pdf_loader(url)) | |
# Load data from URLs (can load data from multiple URLs) | |
elif doc_type == 'urls': | |
logger.info(f'URLs to load data from are: {urls}') | |
valid_urls = self.utils_obj.validate_url_format( | |
urls=urls, | |
url_type=doc_type | |
) | |
# Load data from URLs | |
docs = SimpleWebPageReader(html_to_text=True).load_data(valid_urls) | |
docs = [Document(page_content=doc.text) for doc in docs] | |
documents.extend(docs) | |
# Load data from text file(s) | |
elif doc_type == 'textfile': | |
# Load multiple text files from directory | |
if os.path.isdir(doc_filepath): | |
text_files = glob.glob(f"{doc_filepath}/*.txt") | |
logger.info(f'Total text files to load: {len(text_files)}') | |
for tf in text_files: | |
documents.extend(self.text_loader(tf)) | |
# Loading from a single text file | |
elif os.path.isfile(doc_filepath) and doc_filepath.endswith('.txt'): | |
documents.extend(self.text_loader(doc_filepath)) | |
# Load data from files on the local directory (files may be of type .pdf, .txt, .doc, etc.) | |
elif doc_type == 'directory': | |
# Load multiple PDFs from directory | |
if os.path.isdir(doc_filepath): | |
documents = SimpleDirectoryReader( | |
input_dir=doc_filepath | |
).load_data() | |
# Loading from a file | |
elif os.path.isfile(doc_filepath): | |
documents.extend(SimpleDirectoryReader( | |
input_files=[doc_filepath] | |
).load_data()) | |
# Load data from URLs in Knowledge Base format | |
elif doc_type == 'url-kb': | |
KnowledgeBaseWebReader = download_loader("KnowledgeBaseWebReader") | |
loader = KnowledgeBaseWebReader() | |
for url in urls: | |
doc = loader.load_data( | |
root_url=url, | |
link_selectors=['.article-list a', '.article-list a'], | |
article_path='/articles', | |
body_selector='.article-body', | |
title_selector='.article-title', | |
subtitle_selector='.article-subtitle', | |
) | |
documents.extend(doc) | |
# Load data from URLs and create an agent chain using ChatGPT | |
elif doc_type == 'url-chatgpt': | |
BeautifulSoupWebReader = download_loader("BeautifulSoupWebReader") | |
loader = BeautifulSoupWebReader() | |
# Load data from URLs | |
documents = loader.load_data(urls=urls) | |
# Build the Vector database | |
index = GPTVectorStoreIndex(documents) | |
tools = [ | |
Tool( | |
name="Website Index", | |
func=lambda q: index.query(q), | |
description=f"Useful when you want answer questions about the text retrieved from websites.", | |
), | |
] | |
# Call ChatGPT API | |
llm = OpenAI(temperature=0) # Keep temperature=0 to search from the given urls only | |
memory = ConversationBufferMemory(memory_key="chat_history") | |
agent_chain = initialize_agent( | |
tools, llm, agent="zero-shot-react-description", memory=memory | |
) | |
output = agent_chain.run(input="What language is on this website?") | |
# Clean documents | |
documents = self.clean_documents(documents) | |
logger.info(f'{doc_type} in raw format from: {doc_filepath} loaded successfully!') | |
return documents | |
def clean_documents( | |
self, | |
documents | |
): | |
cleaned_documents = [] | |
for document in documents: | |
if hasattr(document, 'page_content'): | |
document.page_content = self.utils_obj.replace_newlines_and_spaces(document.page_content) | |
elif hasattr(document, 'text'): | |
document.text = self.utils_obj.replace_newlines_and_spaces(document.text) | |
else: | |
document = self.utils_obj.replace_newlines_and_spaces(document) | |
cleaned_documents.append(document) | |
return cleaned_documents | |
def load_external_links_used_by_FTAs(self, | |
sheet_filepath='./data/urls_used_by_ftas/external_links_used_by_FTAs.xlsx' | |
): | |
xls = pd.ExcelFile(sheet_filepath) | |
df = pd.DataFrame(columns=['S.No.', 'Link used for', 'Link type', 'Link']) | |
for sheet_name in xls.sheet_names: | |
sheet = pd.read_excel(xls, sheet_name) | |
if sheet.shape[0] > 0: | |
df = pd.concat([df, sheet]) | |
else: | |
logger.info(f'{sheet_name} has no content.') | |
df = df[['Link used for', 'Link type', 'Link']] | |
# Clean df | |
df = self.utils_obj.clean_df(df) | |
logger.info(f'Total links available across all cities: {df.shape[0]}') | |
return df | |