KKMS-Smart-Search-Demo / src /langchain_utils.py
Chintan Donda
Replace GPTSimpleVectorIndex import with GPTVectorStoreIndex
3d0d57c
raw
history blame
39 kB
import src.constants as constants_utils
import src.data_loader as data_loader_utils
import src.utils as utils
from langchain.llms import OpenAI
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
from langchain.embeddings.openai import OpenAIEmbeddings
import openai
from langchain.vectorstores import Chroma
import chromadb
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain.prompts import PromptTemplate
from llama_index import GPTVectorStoreIndex, GPTListIndex
from langchain.vectorstores import FAISS
import pickle
import shutil
from typing import Dict, List, Optional
import pandas as pd
from datetime import datetime
import os
os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY')
import logging
logging.basicConfig(
format="%(asctime)s %(levelname)s [%(name)s] %(message)s",
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S"
)
logger = logging.getLogger(__name__)
import warnings
warnings.filterwarnings('ignore')
class LANGCHAIN_UTILS:
def __init__(self,
index_type=constants_utils.INDEX_TYPE,
load_from_existing_index_store=constants_utils.LOAD_FROM_EXISTING_INDEX_STORE
):
self.index_type = index_type
self.load_from_existing_index_store = load_from_existing_index_store
# Temporary index in the current context for the doc_type in consideration
self.index = None
# Master index which contains data from multiple sources (PDF, Online PDF, Text files, URLs, etc. It gets updated on Uploading the data from new files/urls without downtime of the application on-demand.)
self.master_index = None
# Data source wise index
self.index_category_doc_type_wise_index = dict(
(ic, dict(
(ds, None) for ds in list(constants_utils.DATA_SOURCES.values()))
) for ic in constants_utils.INDEX_CATEGORY)
# Initialize master index for each INDEX_CATEGORY
for ic in constants_utils.INDEX_CATEGORY:
self.index_category_doc_type_wise_index[ic][constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE] = None
# Data loaded as a Document format in the current context for the doc_type in consideration
self.documents = []
# Instantiate data_loader_utils class object
self.data_loader_utils_obj = data_loader_utils.DATA_LOADER()
# Instantiate UTILS class object
self.utils_obj = utils.UTILS()
# Initialize embeddings (we can also use other embeddings)
self.embeddings = OpenAIEmbeddings(openai_api_key=os.getenv('OPENAI_API_KEY'))
# Initialize LLM model
self.llm = OpenAI(
temperature=0,
max_tokens=constants_utils.LLM_RESPONSE_MAX_TOKENS,
model_name=constants_utils.LLM_BASE_MODEL_NAME
)
# Global history for AgGPT widget
self.global_history = [
{
"role": "assistant",
"content": "Hi, I am a chatbot. I can converse in English. I can answer your questions about farming in India. Ask me anything!"
}
]
# Index category - doc_type wise data sources to display in widget
self.index_category_doc_type_wise_data_sources = {}
def user(
self,
user_message,
history
):
history = history + [[user_message, None]]
self.global_history = self.global_history + [{"role": "user", "content": user_message}]
return "", history
def get_chatgpt_response(
self,
history
):
output = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=history)
history.append({"role": "assistant", "content": output.choices[0].message.content})
return output.choices[0].message.content, history
def bot(
self,
history
):
response, self.global_history = self.get_chatgpt_response(self.global_history)
history[-1][1] = response
return history
def clear_history(
self,
lang="English"
):
self.global_history = [{"role": "assistant", "content": "Hi, I am a chatbot. I can converse in {}. I can answer your questions about farming in India. Ask me anything!".format(lang)}]
return None
def generate_prompt_template(
self,
prompt_type,
input_variables
):
prompt_template = ''
if prompt_type == 'summarize':
prompt_template = """Write a concise summary of the following:
{text}
SUMMARIZE IN ENGLISH:"""
elif prompt_type == 'qa':
prompt_template = """You are a helpful AI assistant. Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. If the question is not related to the context, politely respond that you are tuned to only answer questions that are related to the context.
{context}
Question: {question}
Answer in English:"""
# Working good, but truncated answer
prompt_template = """You are a helpful AI assistant. Use the following pieces of context to answer the question at the end. Start the answer by giving short summary and write the answer starting with Here are some of the key points:. Write each sentence separately with numbering. If you don't know the answer, just say that you don't know, don't try to make up an answer. If the question is not related to the context, politely respond that you are tuned to only answer questions that are related to the context.
{context}
Question: {question}
Answer in English:"""
prompt_template = """You are a helpful AI assistant. Use the following pieces of context to answer the question comprehensively at the end. Start the answer by giving short summary and write the answer starting with Here are some of the key points:. Write each sentence separately with numbering. If you don't know the answer, just say that you don't know, don't try to make up an answer. If the question is not related to the context, politely respond that you are tuned to only answer questions that are related to the context.
{context}
Question: {question}
Answer in English:"""
elif prompt_type == 'weather':
prompt_template = """
What would be the weather based on the below data:
{text}
"""
PROMPT = PromptTemplate(template=prompt_template, input_variables=input_variables)
return PROMPT
def get_textual_summary(
self,
text,
chain_type="stuff",
custom_prompt=True,
prompt_type='summarize'
):
texts = [text]
docs = [Document(page_content=t) for t in texts[:3]]
if custom_prompt:
PROMPT = self.generate_prompt_template(
prompt_type=prompt_type,
input_variables=["text"]
)
chain = load_summarize_chain(self.llm, chain_type=chain_type, prompt=PROMPT)
else:
chain = load_summarize_chain(self.llm, chain_type=chain_type)
text_summary = chain.run(docs)
return text_summary
def get_weather_forecast_summary(
self,
text,
chain_type="stuff"
):
text = f"""
What would be the weather based on the below data:
{text}
Give simple response without technical numbers which can be explained to human.
"""
texts = [text]
docs = [Document(page_content=t) for t in texts[:3]]
chain = load_summarize_chain(self.llm, chain_type=chain_type)
text_summary = chain.run(docs)
return text_summary
def get_answer_from_para(
self,
para,
question,
chain_type="stuff",
custom_prompt=True,
prompt_type='qa'
):
# Prepare data (Split paragraph into chunks of small documents)
text_splitter = CharacterTextSplitter(
chunk_size=constants_utils.TEXT_SPLITTER_CHUNK_SIZE,
chunk_overlap=constants_utils.TEXT_SPLITTER_CHUNK_OVERLAP,
separator=constants_utils.TEXT_SPLITTER_SEPARATOR
)
texts = text_splitter.split_text(para)
if self.index_type == 'FAISS':
# Find similar docs that are relevant to the question
docsearch = FAISS.from_texts(
texts, self.embeddings,
metadatas=[{"source": str(i+1)} for i in range(len(texts))]
)
elif self.index_type == 'Chroma':
# Find similar docs that are relevant to the question
docsearch = Chroma.from_texts(
texts, self.embeddings,
metadatas=[{"source": str(i+1)} for i in range(len(texts))]
)
# Search for the similar docs
docs = docsearch.similarity_search(question, k=constants_utils.ANSWER_SIMILARITY_TOP_K)
# Create a Chain for question answering
if custom_prompt:
PROMPT = self.generate_prompt_template(
prompt_type=prompt_type,
input_variables=["context", "question"]
)
chain = load_qa_chain(self.llm, chain_type=chain_type, prompt=PROMPT)
else:
# chain = load_qa_with_sources_chain(self.llm, chain_type=chain_type)
chain = load_qa_chain(self.llm, chain_type=chain_type)
# chain.run(input_documents=docs, question=question)
out_dict = chain({"input_documents": docs, "question": question}, return_only_outputs=True)
return out_dict['output_text']
def load_documents(
self,
doc_type,
doc_filepath='',
urls=[]
):
"""
Load data in Document format of the given doc_type from either doc_filepath or list of urls.
It can load multiple files/urls in one shot.
Args:
doc_type: can be any of [pdf, online_pdf, urls, textfile]
doc_filepath: can be a directory or a filepath
urls: list of urls
"""
logger.info(f'Loading {doc_type} data into Documents format')
if doc_type == 'pdf':
# Load data from PDFs stored in local directory
self.documents.extend(
self.data_loader_utils_obj.load_documents_from_pdf(
doc_filepath=doc_filepath,
doc_type=doc_type
))
elif doc_type == 'online_pdf':
# Load data from PDFs stored in local directory
self.documents.extend(
self.data_loader_utils_obj.load_documents_from_pdf(
urls=urls,
doc_type=doc_type
))
elif doc_type == 'urls':
# Load data from URLs
self.documents.extend(
self.data_loader_utils_obj.load_documents_from_urls(
urls=urls,
doc_type=doc_type
))
elif doc_type == 'textfile':
# Load data from text files & Convert texts into Document format
self.documents.extend(
self.data_loader_utils_obj.load_documents_from_text(
doc_filepath=doc_filepath,
doc_type=doc_type
))
elif doc_type == 'directory':
# Load data from local directory
self.documents.extend(
self.data_loader_utils_obj.load_documents_from_directory(
doc_filepath=doc_filepath,
doc_type=doc_type
))
logger.info(f'{doc_type} data into Documents format loaded successfully!')
def create_index(
self
):
if not self.documents:
logger.warning(f'Empty documents. Index cannot be created!')
return None
logger.info(f'Creating index')
text_splitter = CharacterTextSplitter(
chunk_size=constants_utils.TEXT_SPLITTER_CHUNK_SIZE,
chunk_overlap=constants_utils.TEXT_SPLITTER_CHUNK_OVERLAP,
separator=constants_utils.TEXT_SPLITTER_SEPARATOR
)
self.documents = text_splitter.split_documents(self.documents)
############## Build the Vector store for docs ##############
# Vector store using Facebook AI Similarity Search
if self.index_type == 'FAISS':
self.index = FAISS.from_documents(
self.documents,
self.embeddings
)
# Vector store using Chroma DB
elif self.index_type == 'Chroma':
if not os.path.exists(self.index_filepath):
os.makedirs(self.index_filepath)
self.index = Chroma.from_documents(
self.documents,
self.embeddings,
persist_directory=self.index_filepath
)
# Vector store using GPT vector index
elif self.index_type == 'GPTVectorStoreIndex':
self.index = GPTVectorStoreIndex.from_documents(self.documents)
logger.info(f'Index created successfully!')
return self.index
def get_index_filepath(
self,
index_category,
doc_type
):
if doc_type == 'master':
self.index_filepath = os.path.join(
constants_utils.OUTPUT_PATH, f'index_{index_category}') if self.index_type in ['FAISS', 'Chroma'] else os.path.join(constants_utils.OUTPUT_PATH, f'index_{index_category}.json')
else:
self.index_filepath = os.path.join(
constants_utils.OUTPUT_PATH, f'index_{index_category}', f'index_{doc_type}') if self.index_type in ['FAISS', 'Chroma'] else os.path.join(constants_utils.OUTPUT_PATH, f'index_{index_category}', f'index_{doc_type}.json')
return self.index_filepath
def load_master_doctype_indices_for_index_category(
self,
index_category
):
logger.info(f'Loading master and doc_type indices for: {index_category}')
# Set master index of index_category = None
self.index_category_doc_type_wise_index[index_category][constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE] = None
for doc_type in self.index_category_doc_type_wise_index[index_category].keys():
self.index = None
self.index_filepath = self.get_index_filepath(
index_category=index_category,
doc_type=doc_type
)
self.load_index()
# Set master/doc_type index
self.index_category_doc_type_wise_index[index_category][doc_type] = self.index
logger.info(f'Master and doc_type indices for: {index_category} loaded successfully!')
def load_create_index(
self
):
logger.info(f'Loading/Creating index for each index_category')
for index_category in constants_utils.INDEX_CATEGORY:
# Load master index_category index if self.load_from_existing_index_store == True
if self.load_from_existing_index_store:
self.load_master_doctype_indices_for_index_category(index_category)
# For any reason, if master index is not loaded then create the new index/vector store
if not self.index_category_doc_type_wise_index[index_category][constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE]:
logger.info(f'Creating a new Vector/Index store for: {index_category}')
doc_filepath = os.path.join(constants_utils.DATA_PATH, index_category)
urls = []
# Build the Vector/Index store
for doc_type in list(constants_utils.DATA_SOURCES.values()):
logger.info(f'Creating a new Vector/Index store for: {index_category} from data source: {doc_type}')
index = None
if doc_type in ['pdf', 'textfile']:
index = self.create_store_index(
doc_type=doc_type,
doc_filepath=doc_filepath,
index_category=index_category
)
else:
# Build the Vector/Index store from web urls
index = self.create_store_index(
doc_type=doc_type,
urls=urls,
index_category=index_category
)
if index:
self.index_category_doc_type_wise_index[index_category][doc_type] = index
logger.info(f'New Vector/Index store for: {index_category} from data source: {doc_type} created successfully!')
logger.info(f'New Vector/Index store for: {index_category} created successfully!')
# Merge index of each doc_type into a single index_category
self.merge_store_master_index(
index_category=index_category
)
logger.info(f'Index for each index_category loaded successfully!')
def create_store_index(
self,
doc_type='pdf',
doc_filepath=constants_utils.DATA_PATH,
urls=[],
index_category=constants_utils.INDEX_CATEGORY[0]
):
logger.info(f'Creating and storing {doc_type} index')
self.documents = []
self.index = None
self.index_filepath = self.get_index_filepath(
index_category=index_category,
doc_type=doc_type
)
# Delete the old index file
shutil.rmtree(self.index_filepath, ignore_errors=True)
logger.info(f'{self.index_filepath} deleted.')
# Load data in Documents format that can be consumed for index creation
self.load_documents(
doc_type,
doc_filepath,
urls
)
# Create the index from documents for search/retrieval
self.index = self.create_index()
# Store index
self.store_index(
index=self.index,
index_filepath=self.index_filepath
)
logger.info(f'{doc_type} index created and stored successfully!')
# Return the index of the given doc_type (this is an index for a single doc_type). Indices from multiple doc_types should be merged later on in the master index so that query could be made from a single index.
return self.index
def store_index(
self,
index,
index_filepath
):
if not index:
logger.warning(f'Cannot write an empty index to: {index_filepath}!')
return
logger.info(f'Saving index to: {index_filepath}')
if not os.path.exists(index_filepath) and os.path.isdir(index_filepath):
os.makedirs(index_filepath)
if self.index_type == 'FAISS':
index.save_local(index_filepath)
elif self.index_type == 'Chroma':
index.persist()
elif self.index_type == 'GPTVectorStoreIndex':
index.save_to_disk(index_filepath)
elif self.index_type == 'pickle':
with open(index_filepath, "wb") as f:
pickle.dump(index, f)
logger.info(f'Index saved to: {index_filepath} successfully!')
def load_index(
self
):
logger.info(f'Loading index from: {self.index_filepath}')
if not os.path.exists(self.index_filepath):
logger.warning(f"Cannot load index from {self.index_filepath} as the path doest not exist!")
return
if self.index_type == 'FAISS':
self.index = FAISS.load_local(self.index_filepath, self.embeddings)
elif self.index_type == 'Chroma':
self.index = Chroma(
persist_directory=self.index_filepath,
embedding_function=self.embeddings
)
elif self.index_type == 'GPTVectorStoreIndex':
self.index = GPTVectorStoreIndex.load_from_disk(self.index_filepath)
elif self.index_type == 'pickle':
with open(self.index_filepath, "rb") as f:
self.index = pickle.load(f)
logger.info(f'Index loaded from: {self.index_filepath} successfully!')
def convert_text_to_documents(
self,
text_list=[]
):
"""
Converts the list of text data to Documents format that can be feed to GPT API to build the Vector store
"""
from llama_index import Document
documents = [Document(t) for t in text_list]
return documents
def merge_documents_from_different_sources(
self,
doc_documents,
url_documents
):
# Build the Vector store for docs
doc_index = GPTVectorStoreIndex.from_documents(doc_documents)
# Build the Vector store for URLs
url_index = GPTVectorStoreIndex.from_documents(url_documents)
# Set summary of each index
doc_index.set_text("index_from_docs")
url_index.set_text("index_from_urls")
# Merge index of different data sources
index = GPTListIndex([doc_index, url_index])
return index
def merge_store_master_index(
self,
index_category
):
"""
Merge multiple doc_type indices into a single master index. Query/search would be performed on this merged index.
Args:
index_category: index_category (can be any of: [crops, fruits, pest_management, govt_policy, soil, etc.])
"""
logger.info('Merging doc_type indices of different index categories into a master index')
self.index_category_doc_type_wise_index[index_category][constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE] = None
doc_type_indices = self.index_category_doc_type_wise_index[index_category]
if self.index_type == 'FAISS':
for doc_type, index in doc_type_indices.items():
if doc_type == constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE:
# Only merge the non-master doc_type_indices
continue
if not index or not isinstance(index, FAISS):
logger.warning(f'{doc_type} index to be merged is not an instance of type langchain.vectorstores.faiss.FAISS')
continue
if not self.index_category_doc_type_wise_index[index_category][constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE]:
self.index_category_doc_type_wise_index[index_category][constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE] = index
else:
self.index_category_doc_type_wise_index[index_category][constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE].merge_from(index)
elif self.index_type == 'Chroma':
for doc_type, index in doc_type_indices.items():
if not index or not isinstance(index, Chroma):
logger.warning(f'{doc_type} index to be merged is not an instance of type langchain.vectorstores.Chroma')
continue
raise NotImplementedError
elif self.index_type == 'GPTVectorStoreIndex':
for doc_type, index in doc_type_indices.items():
if not index or not isinstance(index, GPTVectorStoreIndex):
logger.warning(f'{doc_type} index to be merged is not an instance of type llama_index.GPTVectorStoreIndex')
continue
raise NotImplementedError
# Store index_category master index
self.store_index(
index=self.index_category_doc_type_wise_index[index_category][constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE],
index_filepath=self.get_index_filepath(
index_category=index_category,
doc_type=constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE
)
)
logger.info('doc_type indices of different index categories into a master index merged successfully!')
def init_chromadb(self):
logger.info('Initializing Chroma DB')
if not os.path.exists(self.index_filepath):
os.makedirs(self.index_filepath)
client_settings = chromadb.config.Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=self.index_filepath,
anonymized_telemetry=False
)
self.index = Chroma(
collection_name="langchain_store",
embedding_function=self.embeddings,
client_settings=client_settings,
persist_directory=self.index_filepath,
)
logger.info('Chroma DB initialized successfully!')
def query_chromadb(
self,
question,
k=1
):
return self.index.similarity_search(query=question, k=k)
def query(self,
question,
question_category,
mode=constants_utils.MODE,
response_mode=constants_utils.RESPONSE_MODE,
similarity_top_k=constants_utils.SIMILARITY_TOP_K,
required_keywords=[],
exclude_keywords=[],
verbose=False
):
'''
Args:
mode: can be any of [default, embedding]
response_mode: can be any of [default, compact, tree_summarize]
'''
logger.info(f'question category: {question_category}; question: {question}')
response = None
# Get the index of the given question_category
index = self.index_category_doc_type_wise_index[question_category][constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE]
if not index:
logger.error(f'Index for {question_category} not found! That means no PDFs, Text files, or URLs have been ingested and indexed so far. Ingest the new data for {question_category} and then querying again.')
return response
if self.index_type == 'FAISS':
response = index.similarity_search(
question,
k=similarity_top_k
)
elif self.index_type == 'Chroma':
response = index.similarity_search(
question,
k=similarity_top_k
)
elif self.index_type == 'GPTVectorStoreIndex':
# Querying the index
response = index.query(
question,
mode=mode,
response_mode=response_mode,
similarity_top_k=similarity_top_k,
required_keywords=required_keywords,
exclude_keywords=exclude_keywords,
verbose=verbose
)
return response
def load_uploaded_documents(
self,
doc_type,
files_or_urls
):
logger.info(f'Loading uploaded documents from: {doc_type}')
if doc_type == 'pdf':
if not isinstance(files_or_urls, list):
files_or_urls = [files_or_urls]
for pdf in files_or_urls:
if not pdf.name.endswith('.pdf'):
logger.warning(f'Found a file other than .pdf format. Cannot load {pdf.name} file!')
continue
logger.info(f'Loading PDF from: {pdf.name}')
# Load PDF as documents
self.documents.extend(
self.data_loader_utils_obj.load_documents_from_pdf(
doc_filepath=pdf.name,
doc_type=doc_type
)
)
elif doc_type == 'textfile':
if not isinstance(files_or_urls, list):
files_or_urls = [files_or_urls]
for text_file in files_or_urls:
if not text_file.name.endswith('.txt'):
logger.warning(f'Found a file other than .txt format. Cannot load {text_file.name} file!')
continue
logger.info(f'Loading textfile from: {text_file.name}')
# Load textfile as documents
self.documents.extend(
self.data_loader_utils_obj.load_documents_from_text(
doc_filepath=text_file.name,
doc_type=doc_type
)
)
elif doc_type == 'online_pdf':
files_or_urls = self.utils_obj.split_text(files_or_urls)
# Load online_pdfs as documents
self.documents.extend(
self.data_loader_utils_obj.load_documents_from_pdf(
doc_type=doc_type,
urls=files_or_urls
)
)
elif doc_type == 'urls':
files_or_urls = self.utils_obj.split_text(files_or_urls)
# Load URLs as documents
self.documents.extend(
self.data_loader_utils_obj.load_documents_from_urls(
doc_type=doc_type,
urls=files_or_urls
)
)
logger.info(f'Uploaded documents from: {doc_type} loaded successfully!')
def upload_data(
self,
doc_type,
files_or_urls,
index_category
):
logger.info(f'Uploading data for: {index_category}; from: {doc_type}')
self.documents = []
self.index = None
# Create documents of the uploaded files
self.load_uploaded_documents(
doc_type,
files_or_urls
)
# Create the index from documents for search/retrieval
self.index = self.create_index()
# Update the existing index with the newly data
self.upsert_index(
doc_type=doc_type,
index_category=index_category
)
logger.info(f'{index_category}-{doc_type} data uploaded successfully!')
def upsert_index(
self,
doc_type,
index_category
):
"""
Updates the index of the given index_category-doc_type, if present.
Creates a new index if index_category-doc_type index is not present.
Also updates the master index for the given index_category.
"""
if not self.index:
return
logger.info(f'Upserting index for: {index_category}-{doc_type}')
if not self.index_category_doc_type_wise_index.get(index_category, None):
"""
If index_category index does not exists
Steps:
- set index_category index
- set doc_type index
- Store new index_category index as master
- Store new doc_type index
"""
logger.info(f'Master index does not exist for: {index_category}. A new {index_category} master index & {doc_type} index would be created.')
self.index_category_doc_type_wise_index.setdefault(index_category, {})
# Set a master index only if it doesn't exist. Else keep it's value as-it-is.
self.index_category_doc_type_wise_index[index_category][constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE] = self.index
# Set an index for the given doc_type only if it doesn't exist. Else keep it's value as-it-is.
self.index_category_doc_type_wise_index[index_category][doc_type] = self.index
elif not self.index_category_doc_type_wise_index[index_category].get(doc_type, None):
"""
If doc_type index does not exists
Steps:
- set doc_type index
- if master index does not exist for the index_category - set a master index
- if master index exists - update the master index to merge it with doc_type index
- Store new/updated index_category index as master
- Store new doc_type index
"""
logger.info(f'{doc_type} index does not exist for: {index_category}-{doc_type}. A new {doc_type} index would be created.')
# create doc_type index
self.index_category_doc_type_wise_index[index_category][doc_type] = self.index
# if master index does not exist for the index_category - create a master index
if not self.index_category_doc_type_wise_index[index_category].get(constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE, None):
logger.info(f'Master index does not exist for: {index_category}-{doc_type}. A new master index would be created.')
self.index_category_doc_type_wise_index[index_category][constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE] = self.index
else:
"""
If the new document is of the existing index_category & doc_type
Steps:
- if master index does not exist for the index_category - set a master index
- if master index exists - update the master index to merge it with doc_type index
- update the doc_type index
- Store updated index_category index as master
- Store updated doc_type index
"""
# if master index does not exist for the index_category - create a master index
if not self.index_category_doc_type_wise_index[index_category].get(constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE, None):
logger.info(f'Master index does not exist for: {index_category}-{doc_type}. A new master index would be created.')
self.index_category_doc_type_wise_index[index_category][constants_utils.INDEX_CATEGORY_MASTER_INDEX_DOC_TYPE] = self.index
# Merge new self.index with existing doc_type index
self.index_category_doc_type_wise_index[index_category][doc_type].merge_from(self.index)
# Update self.index to store/overwrite the existing index with the updated index
self.index = self.index_category_doc_type_wise_index[index_category][doc_type]
# Store newly created/merged index
self.store_index(
index=self.index,
index_filepath=self.get_index_filepath(
index_category=index_category,
doc_type=doc_type
)
)
# Merge and store master index for index_category
self.merge_store_master_index(
index_category=index_category
)
logger.info(f'Index for: {index_category}-{doc_type} upserted successful!')
def delete_index(
self,
ids: Optional[List[str]] = None,
# filter: Optional[DocumentMetadataFilter] = None,
delete_all: Optional[bool] = None,
):
"""
Removes vectors by ids, filter, or everything in the datastore.
Multiple parameters can be used at once.
Returns whether the operation was successful.
"""
logger.info(f'Deleting index')
raise NotImplementedError
# NOTE: we can delete a specific collection
self.index.delete_collection()
self.index.persist()
# Or just nuke the persist directory
# !rm -rf self.index_filepath
def get_index_category_wise_data_sources(
self
):
# self.index_category_doc_type_wise_data_sources
for index_category, doc_type in self.index_category_doc_type_wise_index.items():
self.index_category_doc_type_wise_data_sources.setdefault(index_category, {})
for dt in doc_type.keys():
if dt == 'master':
continue
self.index_category_doc_type_wise_data_sources[index_category].setdefault(dt, set())
if doc_type[dt]:
docs = doc_type[dt].docstore._dict
for doc, val in docs.items():
if 'source' in val.metadata and val.metadata['source']:
self.index_category_doc_type_wise_data_sources[index_category][dt].add(val.metadata['source'])
return self.index_category_doc_type_wise_data_sources
def save_answer_feeback(
self,
question_category,
question,
answer,
feedback
):
logger.info(f'Question category: {question_category}')
logger.info(f'Question: {question}')
logger.info(f'Answer: {answer}')
logger.info(f'Answer feedback is: {feedback}')
feedback_filepath = os.path.join(
constants_utils.OUTPUT_PATH_ANSWER_FEEDBACK,
f'{constants_utils.OUTPUT_PATH_ANSWER_FEEDBACK_FILE_PREFIX}_{question_category}.tsv'
)
if os.path.exists(feedback_filepath):
df = pd.read_csv(feedback_filepath, sep=constants_utils.OUTPUT_PATH_ANSWER_FEEDBACK_FILE_SAVE_SEPARATOR)
else:
df = pd.DataFrame(columns=['question_category', 'question', 'answer', 'feedback', 'timestamp'])
# Append answer feedback to df
df.loc[len(df)] = {
'question_category': question_category,
'question': question,
'answer': answer,
'feedback': feedback,
'timestamp': datetime.strftime(datetime.now(), '%Y-%m-%d %H:%M:%S.%f')[:-3]
}
# Save df into TSV format
df.to_csv(feedback_filepath, sep=constants_utils.OUTPUT_PATH_ANSWER_FEEDBACK_FILE_SAVE_SEPARATOR, index=False, header=True)
def get_sources_of_relevant_paragraphs(
self,
relevant_paragraphs
):
sources_relevant_paragraphs = []
# Extract information on Source of relevant_paragraphs
for indx, doc in enumerate(relevant_paragraphs):
if 'source' in doc.metadata and 'page' in doc.metadata and doc.metadata['source'].endswith('.pdf'):
# Need to add +1 as PyPDFLoader sets page number from 0th-index
relevant_paragraphs[indx].metadata['page'] += 1
sources_relevant_paragraphs = [doc.metadata for doc in relevant_paragraphs]
return sources_relevant_paragraphs
def clean_relevant_paragraphs(
self,
relevant_paragraphs
):
cleaned_relevant_paragraphs = []
for doc in relevant_paragraphs:
cleaned_relevant_paragraphs.append(self.utils_obj.replace_newlines_and_spaces(doc.page_content))
return cleaned_relevant_paragraphs