File size: 4,752 Bytes
f66b197 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
from flask import Flask, request, jsonify
import os
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
import cv2
app = Flask(__name__)
# Define constants or parameters
min_kick_angle = 30 # Minimum angle for the leg to be considered a kick
frame_window = 10 # Number of frames to consider for action recognition
kick_counter = 0
highest_kick_frame = -1 # Initialize the frame number of the highest kick
highest_kick_knee = None # Initialize coordinates of the knee for the highest kick
highest_kick_hip = None # Initialize coordinates of the hip for the highest kick
# Initialize variables for action recognition
frame_buffer = []
# Load the MoveNet model for pose estimation from TensorFlow Hub
model = hub.load("https://tfhub.dev/google/movenet/singlepose/thunder/4")
pose_net = model.signatures['serving_default']
# Define upload folder for video files
UPLOAD_FOLDER = 'uploads'
ALLOWED_EXTENSIONS = {'mp4'}
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# Function to detect front kick based on keypoints
def detect_front_kick_func(keypoints, frame_number):
keypoints_array = keypoints[0] # Get the NumPy array from the list
right_hip = keypoints_array[0, 0, 8, :] # Right hip is at index 8
right_knee = keypoints_array[0, 0, 9, :] # Right knee is at index 9
# print(right_hip, ' ', right_knee)
if right_knee[2] < 0.4 and right_hip[2] < 0.4:
return False, -1, None, None
angle = np.arctan2(right_knee[1] - right_hip[1], right_knee[0] - right_hip[0]) * 180 / np.pi
if angle > min_kick_angle:
return True, frame_number, right_knee, right_hip
else:
return False, -1, None, None
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
@app.route('/detect_front_kick', methods=['POST'])
def detect_front_kick():
try:
# Check if the 'video' field is in the request
if 'video' not in request.files:
return jsonify({'error': 'No video file provided'})
video_file = request.files['video']
# Check if the file has the allowed extension
if not allowed_file(video_file.filename):
return jsonify({'error': 'Invalid file format. Only MP4 videos are allowed.'})
# Save the video file to the upload folder with a secure name
video_filename = (video_file.filename)
video_filepath = os.path.join(app.config['UPLOAD_FOLDER'], video_filename)
video_file.save(video_filepath)
# Open the video file for processing
cap = cv2.VideoCapture(video_filepath)
# Check if the video file was opened successfully
if not cap.isOpened():
return jsonify({'error': 'Failed to open video file.'})
frame_number = 0 # Initialize frame number
while True:
ret, frame = cap.read()
if not ret:
break
# Preprocess the frame (resize, normalize, denoise, etc.)
# Perform pose estimation using MoveNet
resized_frame = cv2.resize(frame, (256, 256))
image = tf.constant(resized_frame, dtype=tf.int32)
image = tf.expand_dims(image, axis=0)
# Run model inference
outputs = pose_net(image)
keypoints = outputs['output_0'].numpy()
# Append the keypoints to the frame buffer
frame_buffer.append(keypoints)
# Maintain a sliding window of frames for action recognition
if len(frame_buffer) > frame_window:
frame_buffer.pop(0)
# Perform action recognition using the frame buffer
if len(frame_buffer) == frame_window:
is_kick, frame_with_kick, knee, hip = detect_front_kick_func(frame_buffer, frame_number)
if is_kick:
kick_counter += 1
if frame_with_kick > highest_kick_frame:
highest_kick_frame = frame_with_kick
highest_kick_knee = knee
highest_kick_hip = hip
frame_number += 1
cap.release()
response_data = {
'kick_counter': kick_counter,
'highest_kick_frame': highest_kick_frame,
'highest_kick_knee': highest_kick_knee.tolist() if highest_kick_knee is not None else None,
'highest_kick_hip': highest_kick_hip.tolist() if highest_kick_hip is not None else None,
}
return jsonify(response_data)
except Exception as e:
return jsonify({'error': str(e)})
@app.route('/home', methods=['GET'])
def homie():
return jsonify({"message":"none"})
if __name__ == '__main__':
app.run(debug=True) |