Spaces:
Build error
Build error
init
Browse files
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
python_version: 3.7
|
3 |
title: U2net_portrait
|
4 |
emoji: 🦀
|
5 |
colorFrom: indigo
|
|
|
1 |
---
|
|
|
2 |
title: U2net_portrait
|
3 |
emoji: 🦀
|
4 |
colorFrom: indigo
|
app.py
CHANGED
@@ -6,58 +6,15 @@ import sys
|
|
6 |
sys.path.insert(0, 'U-2-Net')
|
7 |
|
8 |
from skimage import io, transform
|
9 |
-
import torch
|
10 |
-
import torchvision
|
11 |
-
from torch.autograd import Variable
|
12 |
-
import torch.nn as nn
|
13 |
-
import torch.nn.functional as F
|
14 |
-
from torch.utils.data import Dataset, DataLoader
|
15 |
-
from torchvision import transforms#, utils
|
16 |
-
# import torch.optim as optim
|
17 |
|
18 |
import numpy as np
|
19 |
from PIL import Image
|
20 |
-
import glob
|
21 |
|
22 |
-
from data_loader import RescaleT
|
23 |
-
from data_loader import ToTensor
|
24 |
-
from data_loader import ToTensorLab
|
25 |
-
from data_loader import SalObjDataset
|
26 |
|
27 |
-
from model import U2NET # full size version 173.6 MB
|
28 |
-
from model import U2NETP # small version u2net 4.7 MB
|
29 |
|
30 |
from modnet import ModNet
|
31 |
import huggingface_hub
|
32 |
|
33 |
-
# normalize the predicted SOD probability map
|
34 |
-
def normPRED(d):
|
35 |
-
ma = torch.max(d)
|
36 |
-
mi = torch.min(d)
|
37 |
-
|
38 |
-
dn = (d-mi)/(ma-mi)
|
39 |
-
|
40 |
-
return dn
|
41 |
-
def save_output(image_name,pred,d_dir):
|
42 |
-
predict = pred
|
43 |
-
predict = predict.squeeze()
|
44 |
-
predict_np = predict.cpu().data.numpy()
|
45 |
-
|
46 |
-
im = Image.fromarray(predict_np*255).convert('RGB')
|
47 |
-
img_name = image_name.split(os.sep)[-1]
|
48 |
-
image = io.imread(image_name)
|
49 |
-
imo = im.resize((image.shape[1],image.shape[0]),resample=Image.BILINEAR)
|
50 |
-
|
51 |
-
pb_np = np.array(imo)
|
52 |
-
|
53 |
-
aaa = img_name.split(".")
|
54 |
-
bbb = aaa[0:-1]
|
55 |
-
imidx = bbb[0]
|
56 |
-
for i in range(1,len(bbb)):
|
57 |
-
imidx = imidx + "." + bbb[i]
|
58 |
-
|
59 |
-
imo.save(d_dir+'/'+imidx+'.png')
|
60 |
-
return d_dir+'/'+imidx+'.png'
|
61 |
|
62 |
|
63 |
|
@@ -66,76 +23,15 @@ modnet_path = huggingface_hub.hf_hub_download('hylee/apdrawing_model',
|
|
66 |
force_filename='modnet.onnx')
|
67 |
modnet = ModNet(modnet_path)
|
68 |
|
69 |
-
|
70 |
-
model_name='u2net_portrait'#u2netp
|
71 |
-
|
72 |
-
|
73 |
-
image_dir = 'portrait_im'
|
74 |
-
prediction_dir = 'portrait_results'
|
75 |
-
if(not os.path.exists(prediction_dir)):
|
76 |
-
os.mkdir(prediction_dir)
|
77 |
-
|
78 |
-
model_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'U-2-Net/saved_models/u2net_portrait/u2net_portrait.pth')
|
79 |
-
|
80 |
-
|
81 |
-
# --------- 3. model define ---------
|
82 |
-
|
83 |
-
print("...load U2NET---173.6 MB")
|
84 |
-
net = U2NET(3,1)
|
85 |
-
|
86 |
-
net.load_state_dict(torch.load(model_dir, map_location='cpu'))
|
87 |
-
# if torch.cuda.is_available():
|
88 |
-
# net.cuda()
|
89 |
-
net.eval()
|
90 |
-
|
91 |
-
|
92 |
def process(im):
|
93 |
image = modnet.segment(im.name)
|
94 |
im_path = os.path.abspath(os.path.basename(im.name))
|
95 |
Image.fromarray(np.uint8(image)).save(im_path)
|
96 |
|
97 |
-
|
98 |
-
print("Number of images: ", len(img_name_list))
|
99 |
-
# --------- 2. dataloader ---------
|
100 |
-
# 1. dataloader
|
101 |
-
test_salobj_dataset = SalObjDataset(img_name_list=img_name_list,
|
102 |
-
lbl_name_list=[],
|
103 |
-
transform=transforms.Compose([RescaleT(512),
|
104 |
-
ToTensorLab(flag=0)])
|
105 |
-
)
|
106 |
-
test_salobj_dataloader = DataLoader(test_salobj_dataset,
|
107 |
-
batch_size=1,
|
108 |
-
shuffle=False,
|
109 |
-
num_workers=1)
|
110 |
-
|
111 |
-
results = []
|
112 |
-
# --------- 4. inference for each image ---------
|
113 |
-
for i_test, data_test in enumerate(test_salobj_dataloader):
|
114 |
-
|
115 |
-
print("inferencing:", img_name_list[i_test].split(os.sep)[-1])
|
116 |
-
|
117 |
-
inputs_test = data_test['image']
|
118 |
-
inputs_test = inputs_test.type(torch.FloatTensor)
|
119 |
-
|
120 |
-
# if torch.cuda.is_available():
|
121 |
-
# inputs_test = Variable(inputs_test.cuda())
|
122 |
-
# else:
|
123 |
-
inputs_test = Variable(inputs_test)
|
124 |
-
|
125 |
-
d1, d2, d3, d4, d5, d6, d7 = net(inputs_test)
|
126 |
-
|
127 |
-
# normalization
|
128 |
-
pred = 1.0 - d1[:, 0, :, :]
|
129 |
-
pred = normPRED(pred)
|
130 |
-
|
131 |
-
# save results to test_results folder
|
132 |
-
results.append(save_output(img_name_list[i_test], pred, prediction_dir))
|
133 |
-
|
134 |
-
del d1, d2, d3, d4, d5, d6, d7
|
135 |
-
|
136 |
-
print(results)
|
137 |
|
138 |
-
return Image.open(
|
139 |
|
140 |
title = "U-2-Net"
|
141 |
description = "Gradio demo for U-2-Net, https://github.com/xuebinqin/U-2-Net"
|
|
|
6 |
sys.path.insert(0, 'U-2-Net')
|
7 |
|
8 |
from skimage import io, transform
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
import numpy as np
|
11 |
from PIL import Image
|
|
|
12 |
|
|
|
|
|
|
|
|
|
13 |
|
|
|
|
|
14 |
|
15 |
from modnet import ModNet
|
16 |
import huggingface_hub
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
|
|
|
23 |
force_filename='modnet.onnx')
|
24 |
modnet = ModNet(modnet_path)
|
25 |
|
26 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def process(im):
|
28 |
image = modnet.segment(im.name)
|
29 |
im_path = os.path.abspath(os.path.basename(im.name))
|
30 |
Image.fromarray(np.uint8(image)).save(im_path)
|
31 |
|
32 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
return Image.open(im_path)
|
35 |
|
36 |
title = "U-2-Net"
|
37 |
description = "Gradio demo for U-2-Net, https://github.com/xuebinqin/U-2-Net"
|