File size: 7,224 Bytes
c914273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import datetime
import os
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
from tqdm import tqdm
import pandas as pd
import numpy as np
from torch.utils.data import random_split, SubsetRandomSampler
import json
from sklearn.model_selection import KFold

from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
from preprocessing.dataset import SongDataset
from preprocessing.preprocess import get_examples
from dancer_net.dancer_net import ShortChunkCNN

DEVICE = "mps"
SEED = 42

def get_timestamp() -> str:
    return datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")

class EarlyStopping:
    def __init__(self, patience=0):
        self.patience = patience
        self.last_measure = np.inf
        self.consecutive_increase = 0
    
    def step(self, val) -> bool:
        if self.last_measure <= val:
            self.consecutive_increase +=1
        else:
            self.consecutive_increase = 0
        self.last_measure = val

        return self.patience < self.consecutive_increase



def calculate_metrics(pred, target, threshold=0.5, prefix=""):
    target = target.detach().cpu().numpy()
    pred = pred.detach().cpu().numpy()
    pred = np.array(pred > threshold, dtype=float)
    metrics= {
            'precision': precision_score(y_true=target, y_pred=pred, average='macro', zero_division=0),
            'recall': recall_score(y_true=target, y_pred=pred, average='macro', zero_division=0),
            'f1': f1_score(y_true=target, y_pred=pred, average='macro', zero_division=0),
            'accuracy': accuracy_score(y_true=target, y_pred=pred),
            }
    if prefix != "":
        metrics = {prefix + k : v for k, v in metrics.items()}
    
    return metrics


def evaluate(model:nn.Module, data_loader:DataLoader, criterion, device="mps") -> pd.Series:
    val_metrics = []
    for features, labels in (prog_bar := tqdm(data_loader)):
        features = features.to(device)
        labels = labels.to(device)
        with torch.no_grad():
            outputs = model(features)
            loss = criterion(outputs, labels)
        batch_metrics = calculate_metrics(outputs, labels, prefix="val_")
        batch_metrics["val_loss"] = loss.item()
        prog_bar.set_description(f'Validation - Loss: {batch_metrics["val_loss"]:.2f}, Accuracy: {batch_metrics["val_accuracy"]:.2f}')
        val_metrics.append(batch_metrics)
    return pd.DataFrame(val_metrics).mean()

    

def train(
    model: nn.Module,
    data_loader: DataLoader,
    val_loader=None,
    epochs=3,
    lr=1e-3,
    device="mps"):
    criterion = nn.BCELoss()
    optimizer = torch.optim.Adam(model.parameters(),lr=lr)
    early_stop = EarlyStopping(1)
    scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=lr,
                                                    steps_per_epoch=int(len(data_loader)),
                                                    epochs=epochs,
                                                    anneal_strategy='linear')
    metrics = []
    for epoch in range(1,epochs+1):
        train_metrics = []
        prog_bar = tqdm(data_loader)
        for features, labels in prog_bar:
            features = features.to(device)
            labels = labels.to(device)
            optimizer.zero_grad()
            outputs = model(features)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            scheduler.step()
            batch_metrics = calculate_metrics(outputs, labels)
            batch_metrics["loss"] = loss.item()
            train_metrics.append(batch_metrics)
            prog_bar.set_description(f'Training - Epoch: {epoch}/{epochs}, Loss: {batch_metrics["loss"]:.2f}, Accuracy: {batch_metrics["accuracy"]:.2f}')
        train_metrics = pd.DataFrame(train_metrics).mean()
        if val_loader is not None:
            val_metrics = evaluate(model, val_loader, criterion)
            if early_stop.step(val_metrics["val_f1"]):
                break
            epoch_metrics = pd.concat([train_metrics, val_metrics], axis=0)
        else:
            epoch_metrics = train_metrics
        metrics.append(dict(epoch_metrics))

    return model, metrics
        

def cross_validation(seed=42, batch_size=64, k=5, device="mps"):
    target_classes = ['ATN',
    'BBA',
    'BCH',
    'BLU',
    'CHA',
    'CMB',
    'CSG',
    'ECS',
    'HST',
    'JIV',
    'LHP',
    'QST',
    'RMB',
    'SFT',
    'SLS',
    'SMB',
    'SWZ',
    'TGO',
    'VWZ',
    'WCS']
    df = pd.read_csv("data/songs.csv")
    x,y = get_examples(df, "data/samples",class_list=target_classes)
    
    dataset = SongDataset(x,y)
    splits=KFold(n_splits=k,shuffle=True,random_state=seed)
    metrics = []
    for fold, (train_idx,val_idx) in enumerate(splits.split(x,y)):
        print(f"Fold {fold+1}")

        train_sampler = SubsetRandomSampler(train_idx)
        test_sampler = SubsetRandomSampler(val_idx)
        train_loader = DataLoader(dataset, batch_size=batch_size, sampler=train_sampler)
        test_loader = DataLoader(dataset, batch_size=batch_size, sampler=test_sampler)
        n_classes = len(y[0])
        model = ShortChunkCNN(n_class=n_classes).to(device)
        model, _ = train(model,train_loader, epochs=2, device=device)
        val_metrics = evaluate(model, test_loader, nn.BCELoss())
        metrics.append(val_metrics)
    metrics = pd.DataFrame(metrics)
    log_dir = os.path.join(
    "logs", get_timestamp()
    )
    os.makedirs(log_dir, exist_ok=True)
    
    metrics.to_csv(model.state_dict(), os.path.join(log_dir, "cross_val.csv"))
                                                                                                             


def train_model():
    target_classes = ['ATN',
        'BBA',
        'BCH',
        'BLU',
        'CHA',
        'CMB',
        'CSG',
        'ECS',
        'HST',
        'JIV',
        'LHP',
        'QST',
        'RMB',
        'SFT',
        'SLS',
        'SMB',
        'SWZ',
        'TGO',
        'VWZ',
        'WCS']
    df = pd.read_csv("data/songs.csv")
    x,y = get_examples(df, "data/samples",class_list=target_classes)
    dataset = SongDataset(x,y)
    train_count = int(len(dataset) * 0.9)
    datasets = random_split(dataset, [train_count, len(dataset) - train_count], torch.Generator().manual_seed(SEED))
    data_loaders = [DataLoader(data, batch_size=64, shuffle=True) for data in datasets]
    train_data, val_data = data_loaders
    example_spec, example_label = dataset[0]
    n_classes = len(example_label)
    model = ShortChunkCNN(n_class=n_classes).to(DEVICE)
    model, metrics = train(model,train_data, val_data, epochs=3, device=DEVICE)
    
    log_dir = os.path.join(
    "logs", get_timestamp()
    )
    os.makedirs(log_dir, exist_ok=True)
    
    torch.save(model.state_dict(), os.path.join(log_dir, "dancer_net.pt"))
    metrics = pd.DataFrame(metrics)
    metrics.to_csv(os.path.join(log_dir, "metrics.csv"))
    config = {
        "classes": target_classes
    }
    with open(os.path.join(log_dir, "config.json")) as f:
        json.dump(config, f)
    print("Training information saved!")

if __name__ == "__main__":
    cross_validation()