Spaces:
Runtime error
Runtime error
File size: 7,516 Bytes
c914273 e6fd727 0030bc6 c914273 0030bc6 3b31903 e6fd727 c914273 0030bc6 3a0f0a5 0030bc6 3b31903 e6fd727 b6800ef e6fd727 3b31903 e6fd727 3a0f0a5 e6fd727 c914273 3b31903 0030bc6 c914273 e6fd727 0030bc6 c914273 0030bc6 3b31903 0030bc6 3b31903 c914273 0030bc6 3b31903 c914273 0030bc6 3b31903 0030bc6 3b31903 0030bc6 3b31903 0030bc6 e6fd727 0030bc6 3b31903 0030bc6 c914273 7b37b0e 3b31903 e6fd727 3b31903 e6fd727 3b31903 e6fd727 3b31903 e6fd727 3b31903 e6fd727 3b31903 e6fd727 3b31903 e6fd727 3b31903 e6fd727 c914273 3a0f0a5 3b31903 3a0f0a5 3b31903 3a0f0a5 3b31903 3a0f0a5 3b31903 c914273 3b31903 e6fd727 3b31903 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
from torch.utils.data import DataLoader
import pandas as pd
from typing import Callable
from torch import nn
from torch.utils.data import SubsetRandomSampler
from sklearn.model_selection import KFold
import pytorch_lightning as pl
from pytorch_lightning import callbacks as cb
from models.utils import LabelWeightedBCELoss
from models.audio_spectrogram_transformer import (
train as train_audio_spectrogram_transformer,
get_id_label_mapping,
)
from preprocessing.dataset import SongDataset, WaveformTrainingEnvironment
from preprocessing.preprocess import get_examples
from models.residual import ResidualDancer, TrainingEnvironment
from models.decision_tree import DanceTreeClassifier, features_from_path
import yaml
from preprocessing.dataset import (
DanceDataModule,
WaveformSongDataset,
HuggingFaceWaveformSongDataset,
)
from torch.utils.data import random_split
import numpy as np
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
from argparse import ArgumentParser
import torch
from torch import nn
from sklearn.utils.class_weight import compute_class_weight
def get_training_fn(id: str) -> Callable:
match id:
case "ast_ptl":
return train_ast_lightning
case "ast_hf":
return train_ast
case "residual_dancer":
return train_model
case "decision_tree":
return train_decision_tree
case _:
raise Exception(f"Couldn't find a training function for '{id}'.")
def get_config(filepath: str) -> dict:
with open(filepath, "r") as f:
config = yaml.safe_load(f)
return config
def cross_validation(config, k=5):
df = pd.read_csv("data/songs.csv")
g_config = config["global"]
batch_size = config["data_module"]["batch_size"]
x, y = get_examples(df, "data/samples", class_list=g_config["dance_ids"])
dataset = SongDataset(x, y)
splits = KFold(n_splits=k, shuffle=True, random_state=g_config["seed"])
trainer = pl.Trainer(accelerator=g_config["device"])
for fold, (train_idx, val_idx) in enumerate(splits.split(x, y)):
print(f"Fold {fold+1}")
model = ResidualDancer(n_classes=len(g_config["dance_ids"]))
train_env = TrainingEnvironment(model, nn.BCELoss())
train_sampler = SubsetRandomSampler(train_idx)
test_sampler = SubsetRandomSampler(val_idx)
train_loader = DataLoader(dataset, batch_size=batch_size, sampler=train_sampler)
test_loader = DataLoader(dataset, batch_size=batch_size, sampler=test_sampler)
trainer.fit(train_env, train_loader)
trainer.test(train_env, test_loader)
def train_model(config: dict):
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
pl.seed_everything(SEED, workers=True)
data = DanceDataModule(target_classes=TARGET_CLASSES, **config["data_module"])
model = ResidualDancer(n_classes=len(TARGET_CLASSES), **config["model"])
label_weights = data.get_label_weights().to(DEVICE)
criterion = LabelWeightedBCELoss(
label_weights
) # nn.CrossEntropyLoss(label_weights)
train_env = TrainingEnvironment(model, criterion, config)
callbacks = [
# cb.LearningRateFinder(update_attr=True),
cb.EarlyStopping("val/loss", patience=5),
cb.StochasticWeightAveraging(1e-2),
cb.RichProgressBar(),
cb.DeviceStatsMonitor(),
]
trainer = pl.Trainer(callbacks=callbacks, **config["trainer"])
trainer.fit(train_env, datamodule=data)
trainer.test(train_env, datamodule=data)
def train_ast(config: dict):
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
dataset_kwargs = config["data_module"]["dataset_kwargs"]
test_proportion = config["data_module"].get("test_proportion", 0.2)
train_proportion = 1.0 - test_proportion
song_data_path = "data/songs_cleaned.csv"
song_audio_path = "data/samples"
pl.seed_everything(SEED, workers=True)
df = pd.read_csv(song_data_path)
x, y = get_examples(
df, song_audio_path, class_list=TARGET_CLASSES, multi_label=True
)
train_i, test_i = random_split(
np.arange(len(x)), [train_proportion, test_proportion]
)
train_ds = HuggingFaceWaveformSongDataset(
x[train_i], y[train_i], **dataset_kwargs, resample_frequency=16000
)
test_ds = HuggingFaceWaveformSongDataset(
x[test_i], y[test_i], **dataset_kwargs, resample_frequency=16000
)
train_audio_spectrogram_transformer(
TARGET_CLASSES, train_ds, test_ds, device=DEVICE
)
def train_ast_lightning(config: dict):
"""
work on integration between waveform dataset and environment. Should work for both HF and PTL.
"""
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
pl.seed_everything(SEED, workers=True)
data = DanceDataModule(
target_classes=TARGET_CLASSES,
dataset_cls=WaveformSongDataset,
**config["data_module"],
)
id2label, label2id = get_id_label_mapping(TARGET_CLASSES)
model_checkpoint = "MIT/ast-finetuned-audioset-10-10-0.4593"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_checkpoint)
model = AutoModelForAudioClassification.from_pretrained(
model_checkpoint,
num_labels=len(label2id),
label2id=label2id,
id2label=id2label,
ignore_mismatched_sizes=True,
).to(DEVICE)
label_weights = data.get_label_weights().to(DEVICE)
criterion = LabelWeightedBCELoss(
label_weights
) # nn.CrossEntropyLoss(label_weights)
train_env = WaveformTrainingEnvironment(model, criterion, feature_extractor, config)
callbacks = [
# cb.LearningRateFinder(update_attr=True),
cb.EarlyStopping("val/loss", patience=5),
cb.StochasticWeightAveraging(1e-2),
cb.RichProgressBar(),
]
trainer = pl.Trainer(callbacks=callbacks, **config["trainer"])
trainer.fit(train_env, datamodule=data)
trainer.test(train_env, datamodule=data)
def train_decision_tree(config: dict):
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
song_data_path = config["data_module"]["song_data_path"]
song_audio_path = config["data_module"]["song_audio_path"]
pl.seed_everything(SEED, workers=True)
df = pd.read_csv(song_data_path)
x, y = get_examples(
df, song_audio_path, class_list=TARGET_CLASSES, multi_label=True
)
# Convert y back to string classes
y = np.array(TARGET_CLASSES)[y.argmax(-1)]
train_i, test_i = random_split(np.arange(len(x)), [0.8, 0.2])
train_paths, train_y = x[train_i], y[train_i]
train_x = features_from_path(train_paths)
model = DanceTreeClassifier(device=DEVICE)
model.fit(train_x, train_y)
model.save()
if __name__ == "__main__":
parser = ArgumentParser(
description="Trains models on the dance dataset and saves weights."
)
parser.add_argument(
"--config",
help="Path to the yaml file that defines the training configuration.",
default="models/config/train_local.yaml",
)
args = parser.parse_args()
config = get_config(args.config)
training_id = config["global"]["id"]
train = get_training_fn(training_id)
train(config)
|