Spaces:
Runtime error
Runtime error
File size: 1,823 Bytes
c914273 4b8361a c914273 4b8361a c914273 4b8361a c914273 4b8361a c914273 4b8361a c914273 4b8361a c914273 4b8361a c914273 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
from pathlib import Path
import gradio as gr
import numpy as np
from models.residual import DancePredictor
import os
from functools import cache
from pathlib import Path
CONFIG_FILE = Path("models/config/dance-predictor.yaml")
@cache
def get_model(config_path:str) -> DancePredictor:
model = DancePredictor.from_config(config_path)
return model
def predict(audio: tuple[int, np.ndarray]) -> list[str]:
sample_rate, waveform = audio
model = get_model(CONFIG_FILE)
results = model(waveform,sample_rate)
return results if len(results) else "Dance Not Found"
def demo():
title = "Dance Classifier"
description = "What should I dance to this song? Pass some audio to the Dance Classifier find out!"
song_samples = Path(os.path.dirname(__file__), "assets", "song-samples")
example_audio = [str(song) for song in song_samples.iterdir() if song.name[0] != '.']
all_dances = get_model(CONFIG_FILE).labels
recording_interface = gr.Interface(
fn=predict,
description="Record at least **6 seconds** of the song.",
inputs=gr.Audio(source="microphone", label="Song Recording"),
outputs=gr.Label(label="Dances"),
examples=example_audio
)
uploading_interface = gr.Interface(
fn=predict,
inputs=gr.Audio(label="Song Audio File"),
outputs=gr.Label(label="Dances"),
examples=example_audio
)
with gr.Blocks() as app:
gr.Markdown(f"# {title}")
gr.Markdown(description)
gr.TabbedInterface([uploading_interface, recording_interface], ["Upload Song", "Record Song"])
with gr.Accordion("See all dances", open=False):
gr.Markdown("\n".join(f"- {dance}" for dance in all_dances))
return app
if __name__ == "__main__":
demo().launch() |