Spaces:
Runtime error
Runtime error
File size: 5,338 Bytes
557fb53 e6fd727 557fb53 e6fd727 557fb53 e6fd727 557fb53 3a0f0a5 557fb53 3a0f0a5 557fb53 3a0f0a5 557fb53 3a0f0a5 557fb53 3a0f0a5 557fb53 3a0f0a5 e6fd727 557fb53 e6fd727 557fb53 e6fd727 557fb53 e6fd727 557fb53 e6fd727 557fb53 e6fd727 557fb53 e6fd727 557fb53 e6fd727 557fb53 e6fd727 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from typing import Any
import pandas as pd
from sklearn.model_selection import train_test_split
from transformers import (
AutoFeatureExtractor,
AutoModelForAudioClassification,
TrainingArguments,
Trainer,
ASTConfig,
ASTFeatureExtractor,
ASTForAudioClassification,
)
import torch
from torch import nn
from models.training_environment import TrainingEnvironment
from preprocessing.pipelines import WaveformTrainingPipeline
from preprocessing.dataset import (
DanceDataModule,
HuggingFaceDatasetWrapper,
get_datasets,
)
from preprocessing.dataset import get_music4dance_examples
from .utils import get_id_label_mapping, compute_hf_metrics
import pytorch_lightning as pl
from pytorch_lightning import callbacks as cb
MODEL_CHECKPOINT = "MIT/ast-finetuned-audioset-10-10-0.4593"
class AST(nn.Module):
def __init__(self, labels, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
id2label, label2id = get_id_label_mapping(labels)
config = ASTConfig(
hidden_size=300,
num_attention_heads=5,
num_hidden_layers=3,
id2label=id2label,
label2id=label2id,
num_labels=len(label2id),
ignore_mismatched_sizes=True,
)
self.model = ASTForAudioClassification(config)
def forward(self, x):
return self.model(x).logits
class ASTExtractorWrapper:
def __init__(self, sampling_rate=16000, return_tensors="pt") -> None:
self.extractor = ASTFeatureExtractor()
self.sampling_rate = sampling_rate
self.return_tensors = return_tensors
self.waveform_pipeline = WaveformTrainingPipeline() # TODO configure from yaml
def __call__(self, x) -> Any:
x = self.waveform_pipeline(x)
device = x.device
x = x.squeeze(0).numpy()
x = self.extractor(
x, return_tensors=self.return_tensors, sampling_rate=self.sampling_rate
)
return x["input_values"].squeeze(0).to(device)
def train_lightning_ast(config: dict):
"""
work on integration between waveform dataset and environment. Should work for both HF and PTL.
"""
TARGET_CLASSES = config["dance_ids"]
DEVICE = config["device"]
SEED = config["seed"]
pl.seed_everything(SEED, workers=True)
feature_extractor = ASTExtractorWrapper()
dataset = get_datasets(config["datasets"], feature_extractor)
data = DanceDataModule(
dataset,
target_classes=TARGET_CLASSES,
**config["data_module"],
)
model = AST(TARGET_CLASSES).to(DEVICE)
label_weights = data.get_label_weights().to(DEVICE)
criterion = nn.CrossEntropyLoss(
label_weights
) # LabelWeightedBCELoss(label_weights)
train_env = TrainingEnvironment(model, criterion, config)
callbacks = [
# cb.LearningRateFinder(update_attr=True),
cb.EarlyStopping("val/loss", patience=5),
cb.RichProgressBar(),
]
trainer = pl.Trainer(callbacks=callbacks, **config["trainer"])
trainer.fit(train_env, datamodule=data)
trainer.test(train_env, datamodule=data)
def train_huggingface_ast(config: dict):
TARGET_CLASSES = config["dance_ids"]
DEVICE = config["device"]
SEED = config["seed"]
OUTPUT_DIR = "models/weights/ast"
batch_size = config["data_module"]["batch_size"]
epochs = config["data_module"]["min_epochs"]
test_proportion = config["data_module"].get("test_proportion", 0.2)
pl.seed_everything(SEED, workers=True)
dataset = get_datasets(config["datasets"])
hf_dataset = HuggingFaceDatasetWrapper(dataset)
id2label, label2id = get_id_label_mapping(TARGET_CLASSES)
model_checkpoint = "MIT/ast-finetuned-audioset-10-10-0.4593"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_checkpoint)
preprocess_waveform = lambda wf: feature_extractor(
wf,
sampling_rate=train_ds.resample_frequency,
# padding="max_length",
# return_tensors="pt",
)
hf_dataset.append_to_pipeline(preprocess_waveform)
test_proportion = config["data_module"]["test_proportion"]
train_proporition = 1 - test_proportion
train_ds, test_ds = torch.utils.data.random_split(
hf_dataset, [train_proporition, test_proportion]
)
model = AutoModelForAudioClassification.from_pretrained(
model_checkpoint,
num_labels=len(TARGET_CLASSES),
label2id=label2id,
id2label=id2label,
ignore_mismatched_sizes=True,
).to(DEVICE)
training_args = TrainingArguments(
output_dir=OUTPUT_DIR,
evaluation_strategy="epoch",
save_strategy="epoch",
learning_rate=5e-5,
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=5,
per_device_eval_batch_size=batch_size,
num_train_epochs=epochs,
warmup_ratio=0.1,
logging_steps=10,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
push_to_hub=False,
use_mps_device=DEVICE == "mps",
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_ds,
eval_dataset=test_ds,
tokenizer=feature_extractor,
compute_metrics=compute_hf_metrics,
)
trainer.train()
return model
|