File size: 6,178 Bytes
c914273
 
 
 
 
557fb53
c914273
557fb53
0030bc6
c914273
0030bc6
c914273
e82ec2b
 
c914273
 
e82ec2b
 
e6fd727
c914273
e82ec2b
 
 
e6fd727
c914273
e82ec2b
 
0030bc6
e82ec2b
0030bc6
 
e82ec2b
0030bc6
e82ec2b
0030bc6
 
 
 
 
 
 
 
 
e82ec2b
 
 
 
 
0030bc6
e82ec2b
0030bc6
 
e82ec2b
 
 
0030bc6
 
 
 
 
e82ec2b
 
c914273
e82ec2b
 
 
c914273
 
 
 
 
 
 
e82ec2b
c914273
 
 
 
e82ec2b
c914273
 
 
e82ec2b
c914273
 
 
 
 
e82ec2b
 
 
 
c914273
 
 
 
 
 
 
e82ec2b
c914273
 
 
 
e82ec2b
 
 
 
c914273
 
 
e82ec2b
c914273
 
 
e82ec2b
557fb53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0030bc6
 
 
557fb53
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import pandas as pd
import numpy as np
import re
import json
from pathlib import Path
import glob
import os
import shutil
import torchaudio
import torch
from tqdm import tqdm


def url_to_filename(url: str) -> str:
    return f"{url.split('/')[-1]}.wav"


def has_valid_audio(audio_urls: pd.Series, audio_dir: str) -> pd.Series:
    audio_urls = audio_urls.replace(".", np.nan)
    audio_files = set(os.path.basename(f) for f in Path(audio_dir).iterdir())
    valid_audio_mask = audio_urls.apply(
        lambda url: url is not np.nan and url_to_filename(url) in audio_files
    )
    return valid_audio_mask


def validate_audio(audio_urls: pd.Series, audio_dir: str) -> pd.Series:
    """
    Tests audio urls to ensure that their file exists and the contents is valid.
    """
    audio_files = set(os.path.basename(f) for f in Path(audio_dir).iterdir())

    def is_valid(url):
        valid_url = type(url) == str and "http" in url
        if not valid_url:
            return False
        filename = url_to_filename(url)
        if filename not in audio_files:
            return False
        try:
            w, _ = torchaudio.load(os.path.join(audio_dir, filename))
        except:
            return False
        contents_invalid = (
            torch.any(torch.isnan(w))
            or torch.any(torch.isinf(w))
            or len(torch.unique(w)) <= 2
        )
        return not contents_invalid

    idxs = []
    validations = []
    for index, url in tqdm(
        audio_urls.items(), total=len(audio_urls), desc="Audio URLs Validated"
    ):
        idxs.append(index)
        validations.append(is_valid(url))

    return pd.Series(validations, index=idxs)


def fix_dance_rating_counts(dance_ratings: pd.Series) -> pd.Series:
    tag_pattern = re.compile("([A-Za-z]+)(\+|-)(\d+)")
    dance_ratings = dance_ratings.apply(lambda v: json.loads(v.replace("'", '"')))

    def fix_labels(labels: dict) -> dict | float:
        new_labels = {}
        for k, v in labels.items():
            match = tag_pattern.search(k)
            if match is None:
                new_labels[k] = new_labels.get(k, 0) + v
            else:
                k = match[1]
                sign = 1 if match[2] == "+" else -1
                scale = int(match[3])
                new_labels[k] = new_labels.get(k, 0) + v * scale * sign
        valid = any(v > 0 for v in new_labels.values())
        return new_labels if valid else np.nan

    return dance_ratings.apply(fix_labels)


def get_unique_labels(dance_labels: pd.Series) -> list:
    labels = set()
    for dances in dance_labels:
        labels |= set(dances)
    return sorted(labels)


def vectorize_label_probs(
    labels: dict[str, int], unique_labels: np.ndarray
) -> np.ndarray:
    """
    Turns label dict into probability distribution vector based on each label count.
    """
    label_vec = np.zeros((len(unique_labels),), dtype="float32")
    for k, v in labels.items():
        item_vec = (unique_labels == k) * v
        label_vec += item_vec
    label_vec[label_vec < 0] = 0
    label_vec /= label_vec.sum()
    assert not any(np.isnan(label_vec)), f"Provided labels are invalid: {labels}"
    return label_vec


def vectorize_multi_label(
    labels: dict[str, int], unique_labels: np.ndarray
) -> np.ndarray:
    """
    Turns label dict into binary label vectors for multi-label classification.
    """
    probs = vectorize_label_probs(labels, unique_labels)
    probs[probs > 0.0] = 1.0
    return probs


def sort_yt_files(
    aliases_path="data/dance_aliases.json",
    all_dances_folder="data/best-ballroom-music",
    original_location="data/yt-ballroom-music/",
):
    def normalize_string(s):
        # Lowercase string and remove special characters
        return re.sub(r"\W+", "", s.lower())

    with open(aliases_path, "r") as f:
        dances = json.load(f)

    # Normalize the dance inputs and aliases
    normalized_dances = {
        normalize_string(dance_id): [normalize_string(alias) for alias in aliases]
        for dance_id, aliases in dances.items()
    }

    # For every wav file in the target folder
    bad_files = []
    progress_bar = tqdm(os.listdir(all_dances_folder), unit="files moved")
    for file_name in progress_bar:
        if file_name.endswith(".wav"):
            # check if the normalized wav file name contains the normalized dance alias
            normalized_file_name = normalize_string(file_name)

            matching_dance_ids = [
                dance_id
                for dance_id, aliases in normalized_dances.items()
                if any(alias in normalized_file_name for alias in aliases)
            ]

            if len(matching_dance_ids) == 0:
                # See if the dance is in the path
                original_filename = file_name.replace(".wav", "")
                matches = glob.glob(
                    os.path.join(original_location, "**", original_filename),
                    recursive=True,
                )
                if len(matches) == 1:
                    normalized_file_name = normalize_string(matches[0])
                    matching_dance_ids = [
                        dance_id
                        for dance_id, aliases in normalized_dances.items()
                        if any(alias in normalized_file_name for alias in aliases)
                    ]

            if "swz" in matching_dance_ids and "vwz" in matching_dance_ids:
                matching_dance_ids.remove("swz")
            if len(matching_dance_ids) > 1 and "lhp" in matching_dance_ids:
                matching_dance_ids.remove("lhp")

            if len(matching_dance_ids) != 1:
                bad_files.append(file_name)
                progress_bar.set_description(f"bad files: {len(bad_files)}")
                continue
            dst = os.path.join("data", "ballroom-songs", matching_dance_ids[0].upper())
            os.makedirs(dst, exist_ok=True)
            filepath = os.path.join(all_dances_folder, file_name)
            shutil.copy(filepath, os.path.join(dst, file_name))

    with open("data/bad_files.json", "w") as f:
        json.dump(bad_files, f)


if __name__ == "__main__":
    sort_yt_files()