Spaces:
Runtime error
Runtime error
File size: 10,690 Bytes
c914273 4b8361a c914273 4b8361a c914273 0030bc6 4b8361a 0030bc6 e6fd727 4b8361a c914273 0030bc6 c914273 0030bc6 c914273 0030bc6 c914273 0030bc6 c914273 0030bc6 c914273 0030bc6 c914273 0030bc6 c914273 0030bc6 c914273 0030bc6 c914273 0030bc6 c914273 0030bc6 c914273 0030bc6 e6fd727 4b8361a 0030bc6 4b8361a 0030bc6 4b8361a 0030bc6 e6fd727 0030bc6 4b8361a 0030bc6 4b8361a 0030bc6 e6fd727 4b8361a 0030bc6 4b8361a 0030bc6 e6fd727 4b8361a 0030bc6 4b8361a 0030bc6 e6fd727 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import torch
from torch.utils.data import Dataset, DataLoader, random_split
import numpy as np
import pandas as pd
import torchaudio as ta
from .pipelines import AudioTrainingPipeline
import pytorch_lightning as pl
from .preprocess import get_examples
from sklearn.model_selection import train_test_split
from torchaudio import transforms as taT
from torch import nn
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
class SongDataset(Dataset):
def __init__(self,
audio_paths: list[str],
dance_labels: list[np.ndarray],
audio_duration=30, # seconds
audio_window_duration=6, # seconds
audio_window_jitter=0.0, # seconds
audio_pipeline_kwargs={},
resample_frequency=16000
):
assert audio_duration % audio_window_duration == 0, "Audio window should divide duration evenly."
assert audio_window_duration > audio_window_jitter, "Jitter should be a small fraction of the audio window duration."
self.audio_paths = audio_paths
self.dance_labels = dance_labels
audio_info = ta.info(audio_paths[0])
self.sample_rate = audio_info.sample_rate
self.audio_window_duration = int(audio_window_duration)
self.audio_window_jitter = audio_window_jitter
self.audio_duration = int(audio_duration)
self.audio_pipeline = AudioTrainingPipeline(self.sample_rate, resample_frequency, audio_window_duration, **audio_pipeline_kwargs)
def __len__(self):
return len(self.audio_paths) * self.audio_duration // self.audio_window_duration
def __getitem__(self, idx:int) -> tuple[torch.Tensor, torch.Tensor]:
waveform = self._waveform_from_index(idx)
assert waveform.shape[1] > 10, f"No data found: {self._backtrace_audio_path(idx)}"
spectrogram = self.audio_pipeline(waveform)
dance_labels = self._label_from_index(idx)
example_is_valid = self._validate_output(spectrogram, dance_labels)
if example_is_valid:
return spectrogram, dance_labels
else:
# Try the previous one
# This happens when some of the audio recordings are really quiet
# This WILL NOT leak into other data partitions because songs belong entirely to a partition
return self[idx-1]
def _convert_idx(self,idx:int) -> int:
return idx * self.audio_window_duration // self.audio_duration
def _backtrace_audio_path(self, index:int) -> str:
return self.audio_paths[self._convert_idx(index)]
def _validate_output(self,x,y):
is_finite = not torch.any(torch.isinf(x))
is_numerical = not torch.any(torch.isnan(x))
has_data = torch.any(x != 0.0)
is_binary = len(torch.unique(y)) < 3
return all((is_finite,is_numerical, has_data, is_binary))
def _waveform_from_index(self, idx:int) -> torch.Tensor:
audio_filepath = self.audio_paths[self._convert_idx(idx)]
num_windows = self.audio_duration // self.audio_window_duration
frame_index = idx % num_windows
jitter_start = -self.audio_window_jitter if frame_index > 0 else 0.0
jitter_end = self.audio_window_jitter if frame_index != num_windows - 1 else 0.0
jitter = int(torch.FloatTensor(1).uniform_(jitter_start, jitter_end) * self.sample_rate)
frame_offset = frame_index * self.audio_window_duration * self.sample_rate + jitter
num_frames = self.sample_rate * self.audio_window_duration
waveform, sample_rate = ta.load(audio_filepath, frame_offset=frame_offset, num_frames=num_frames)
assert sample_rate == self.sample_rate, f"Expected sample rate of {self.sample_rate}. Found {sample_rate}"
return waveform
def _label_from_index(self, idx:int) -> torch.Tensor:
return torch.from_numpy(self.dance_labels[self._convert_idx(idx)])
class WaveformSongDataset(SongDataset):
"""
Outputs raw waveforms of the data instead of a spectrogram.
"""
def __init__(self, *args,resample_frequency=16000, **kwargs):
super().__init__(*args, **kwargs)
self.resample_frequency = resample_frequency
self.resampler = taT.Resample(self.sample_rate, self.resample_frequency)
self.pipeline = []
def __getitem__(self, idx:int) -> dict[str, torch.Tensor]:
waveform = self._waveform_from_index(idx)
assert waveform.shape[1] > 10, f"No data found: {self._backtrace_audio_path(idx)}"
# resample the waveform
waveform = self.resampler(waveform)
waveform = waveform.mean(0)
dance_labels = self._label_from_index(idx)
return waveform, dance_labels
class HuggingFaceWaveformSongDataset(WaveformSongDataset):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.pipeline = []
def __getitem__(self, idx:int) -> dict[str, torch.Tensor]:
x,y = super().__getitem__(idx)
if len(self.pipeline) > 0:
for fn in self.pipeline:
x = fn(x)
dance_labels = y.argmax()
return {"input_values": x["input_values"][0] if hasattr(x, "input_values") else x, "label": dance_labels}
def map(self,fn):
"""
NOTE this mutates the original, doesn't return a copy like normal maps.
"""
self.pipeline.append(fn)
class DanceDataModule(pl.LightningDataModule):
def __init__(self,
song_data_path="data/songs_cleaned.csv",
song_audio_path="data/samples",
test_proportion=0.15,
val_proportion=0.1,
target_classes:list[str]=None,
min_votes=1,
batch_size:int=64,
num_workers=10,
dataset_cls = None,
dataset_kwargs={}
):
super().__init__()
self.song_data_path = song_data_path
self.song_audio_path = song_audio_path
self.val_proportion=val_proportion
self.test_proportion=test_proportion
self.train_proportion= 1.-test_proportion-val_proportion
self.target_classes=target_classes
self.batch_size = batch_size
self.num_workers = num_workers
self.dataset_kwargs = dataset_kwargs
self.dataset_cls = dataset_cls if dataset_cls is not None else SongDataset
df = pd.read_csv(song_data_path)
self.x,self.y = get_examples(df, self.song_audio_path,class_list=self.target_classes, multi_label=True, min_votes=min_votes)
def setup(self, stage: str):
train_i, val_i, test_i = random_split(np.arange(len(self.x)), [self.train_proportion, self.val_proportion, self.test_proportion])
self.train_ds = self._dataset_from_indices(train_i)
self.val_ds = self._dataset_from_indices(val_i)
self.test_ds = self._dataset_from_indices(test_i)
def _dataset_from_indices(self, idx:list[int]) -> SongDataset:
return self.dataset_cls(self.x[idx], self.y[idx], **self.dataset_kwargs)
def train_dataloader(self):
return DataLoader(self.train_ds, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True)
def val_dataloader(self):
return DataLoader(self.val_ds, batch_size=self.batch_size, num_workers=self.num_workers)
def test_dataloader(self):
return DataLoader(self.test_ds, batch_size=self.batch_size, num_workers=self.num_workers)
def get_label_weights(self):
n_examples, n_classes = self.y.shape
return torch.from_numpy(n_examples / (n_classes * sum(self.y)))
class WaveformTrainingEnvironment(pl.LightningModule):
def __init__(self, model: nn.Module, criterion: nn.Module, feature_extractor, config:dict, learning_rate=1e-4, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model = model
self.criterion = criterion
self.learning_rate = learning_rate
self.config=config
self.feature_extractor=feature_extractor
self.save_hyperparameters({
"model": type(model).__name__,
"loss": type(criterion).__name__,
"config": config,
**kwargs
})
def preprocess_inputs(self, x):
device = x.device
x = x.squeeze(1).cpu().numpy()
x = self.feature_extractor(list(x),return_tensors='pt', sampling_rate=16000)
return x["input_values"].to(device)
def training_step(self, batch: tuple[torch.Tensor, torch.TensorType], batch_index: int) -> torch.Tensor:
features, labels = batch
features = self.preprocess_inputs(features)
outputs = self.model(features).logits
outputs = nn.Sigmoid()(outputs) # good for multi label classification, should be softmax otherwise
loss = self.criterion(outputs, labels)
metrics = calculate_metrics(outputs, labels, prefix="train/", multi_label=True)
self.log_dict(metrics, prog_bar=True)
return loss
def validation_step(self, batch:tuple[torch.Tensor, torch.TensorType], batch_index:int):
x,y = batch
x = self.preprocess_inputs(x)
preds = self.model(x).logits
preds = nn.Sigmoid()(preds)
metrics = calculate_metrics(preds, y, prefix="val/", multi_label=True)
metrics["val/loss"] = self.criterion(preds, y)
self.log_dict(metrics,prog_bar=True)
def test_step(self, batch:tuple[torch.Tensor, torch.TensorType], batch_index:int):
x, y = batch
x = self.preprocess_inputs(x)
preds = self.model(x).logits
preds = nn.Sigmoid()(preds)
self.log_dict(calculate_metrics(preds, y, prefix="test/", multi_label=True), prog_bar=True)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min') {"scheduler": scheduler, "monitor": "val/loss"}
return [optimizer]
def calculate_metrics(pred, target, threshold=0.5, prefix="", multi_label=True) -> dict[str, torch.Tensor]:
target = target.detach().cpu().numpy()
pred = pred.detach().cpu().numpy()
params = {
"y_true": target if multi_label else target.argmax(1) ,
"y_pred": np.array(pred > threshold, dtype=float) if multi_label else pred.argmax(1),
"zero_division": 0,
"average":"macro"
}
metrics= {
'precision': precision_score(**params),
'recall': recall_score(**params),
'f1': f1_score(**params),
'accuracy': accuracy_score(y_true=params["y_true"], y_pred=params["y_pred"]),
}
return {prefix + k: torch.tensor(v,dtype=torch.float32) for k,v in metrics.items()} |