Spaces:
Runtime error
Runtime error
File size: 5,559 Bytes
797a86a 17a2a7d 797a86a 557fb53 17a2a7d 557fb53 17a2a7d 557fb53 42c4703 557fb53 42c4703 797a86a 557fb53 17a2a7d 557fb53 17a2a7d 557fb53 17a2a7d 557fb53 42c4703 557fb53 17a2a7d 557fb53 17a2a7d a8c0792 17a2a7d 557fb53 797a86a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import importlib
from models.utils import calculate_metrics, plot_to_image, get_dance_mapping
import numpy as np
from abc import ABC, abstractmethod
import pytorch_lightning as pl
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from sklearn.metrics import (
roc_auc_score,
confusion_matrix,
ConfusionMatrixDisplay,
)
class TrainingEnvironment(pl.LightningModule):
def __init__(
self,
model: nn.Module,
criterion: nn.Module,
config: dict,
learning_rate=1e-4,
*args,
**kwargs,
):
super().__init__()
self.model = model
self.criterion = criterion
self.learning_rate = config["training_environment"].get(
"learning_rate", learning_rate
)
self.experiment_loggers = load_loggers(
config["training_environment"].get("loggers", {})
)
self.config = config
self.has_multi_label_predictions = not (
type(criterion).__name__ == "CrossEntropyLoss"
)
self.save_hyperparameters(
{
"model": type(model).__name__,
"loss": type(criterion).__name__,
"config": config,
**kwargs,
}
)
def training_step(
self, batch: tuple[torch.Tensor, torch.TensorType], batch_index: int
) -> torch.Tensor:
features, labels = batch
outputs = self.model(features)
if self.has_multi_label_predictions:
outputs = nn.functional.sigmoid(outputs)
loss = self.criterion(outputs, labels)
metrics = calculate_metrics(
outputs,
labels,
prefix="train/",
multi_label=self.has_multi_label_predictions,
)
self.log_dict(metrics, prog_bar=True)
return loss
def validation_step(
self, batch: tuple[torch.Tensor, torch.TensorType], batch_index: int
):
x, y = batch
preds = self.model(x)
if self.has_multi_label_predictions:
preds = nn.functional.sigmoid(preds)
metrics = calculate_metrics(
preds, y, prefix="val/", multi_label=self.has_multi_label_predictions
)
metrics["val/loss"] = self.criterion(preds, y)
self.log_dict(metrics, prog_bar=True, sync_dist=True)
def test_step(self, batch: tuple[torch.Tensor, torch.TensorType], batch_index: int):
x, y = batch
preds = self.model(x)
if self.has_multi_label_predictions:
preds = nn.functional.sigmoid(preds)
metrics = calculate_metrics(
preds, y, prefix="test/", multi_label=self.has_multi_label_predictions
)
if not self.has_multi_label_predictions:
preds = nn.functional.softmax(preds, dim=1)
y = y.detach().cpu().numpy()
preds = preds.detach().cpu().numpy()
# ROC-auc score
try:
metrics["test/roc_auc_score"] = torch.tensor(
roc_auc_score(y, preds), dtype=torch.float32
)
except ValueError:
# If there is only one class, roc_auc_score will throw an error
pass
pass
self.log_dict(metrics, prog_bar=True)
# Create confusion matrix
preds = preds.argmax(axis=1)
y = y.argmax(axis=1)
cm = confusion_matrix(
preds, y, normalize="all", labels=np.arange(len(self.config["dance_ids"]))
)
if hasattr(self, "test_cm"):
self.test_cm += cm
else:
self.test_cm = cm
def on_test_end(self):
dance_ids = sorted(self.config["dance_ids"])
np.fill_diagonal(self.test_cm, 0)
cm = self.test_cm / self.test_cm.max()
cm_plot = ConfusionMatrixDisplay(cm, display_labels=dance_ids)
fig, ax = plt.subplots(figsize=(12, 12))
cm_plot.plot(ax=ax)
image = plot_to_image(fig)
image = torch.tensor(image, dtype=torch.uint8)
image = image.permute(2, 0, 1)
self.logger.experiment.add_image("test/confusion_matrix", image, 0)
delattr(self, "test_cm")
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, "min")
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": "val/loss",
}
class ExperimentLogger(ABC):
@abstractmethod
def step(self, experiment, data):
pass
class SpectrogramLogger(ExperimentLogger):
def __init__(self, frequency=100) -> None:
self.frequency = frequency
self.counter = 0
def step(self, experiment, batch_index, x, label):
if self.counter == self.frequency:
self.counter = 0
img_index = torch.randint(0, len(x), (1,)).item()
img = x[img_index][0]
img = (img - img.min()) / (img.max() - img.min())
experiment.add_image(
f"batch: {batch_index}, element: {img_index}", img, 0, dataformats="HW"
)
self.counter += 1
def load_loggers(logger_config: dict) -> list[ExperimentLogger]:
loggers = []
for logger_path, kwargs in logger_config.items():
module_name, class_name = logger_path.rsplit(".", 1)
module = importlib.import_module(module_name)
Logger = getattr(module, class_name)
loggers.append(Logger(**kwargs))
return loggers
|