dance-classifier / models /training_environment.py
waidhoferj's picture
refactored loggers
797a86a
raw
history blame
3.8 kB
import importlib
from models.utils import calculate_metrics
from abc import ABC, abstractmethod
import pytorch_lightning as pl
import torch
import torch.nn as nn
class TrainingEnvironment(pl.LightningModule):
def __init__(
self,
model: nn.Module,
criterion: nn.Module,
config: dict,
learning_rate=1e-4,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.model = model
self.criterion = criterion
self.learning_rate = learning_rate
self.experiment_loggers = load_loggers(
config["training_environment"].get("loggers", {})
)
self.config = config
self.has_multi_label_predictions = (
not type(criterion).__name__ == "CrossEntropyLoss"
)
self.save_hyperparameters(
{
"model": type(model).__name__,
"loss": type(criterion).__name__,
"config": config,
**kwargs,
}
)
def training_step(
self, batch: tuple[torch.Tensor, torch.TensorType], batch_index: int
) -> torch.Tensor:
features, labels = batch
outputs = self.model(features)
loss = self.criterion(outputs, labels)
metrics = calculate_metrics(
outputs,
labels,
prefix="train/",
multi_label=self.has_multi_label_predictions,
)
self.log_dict(metrics, prog_bar=True)
experiment = self.logger.experiment
for logger in self.experiment_loggers:
logger.step(experiment, batch_index, features, labels)
return loss
def validation_step(
self, batch: tuple[torch.Tensor, torch.TensorType], batch_index: int
):
x, y = batch
preds = self.model(x)
metrics = calculate_metrics(
preds, y, prefix="val/", multi_label=self.has_multi_label_predictions
)
metrics["val/loss"] = self.criterion(preds, y)
self.log_dict(metrics, prog_bar=True)
def test_step(self, batch: tuple[torch.Tensor, torch.TensorType], batch_index: int):
x, y = batch
preds = self.model(x)
self.log_dict(
calculate_metrics(
preds, y, prefix="test/", multi_label=self.has_multi_label_predictions
),
prog_bar=True,
)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, "min")
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": "val/loss",
}
class ExperimentLogger(ABC):
@abstractmethod
def step(self, experiment, data):
pass
class SpectrogramLogger(ExperimentLogger):
def __init__(self, frequency=100) -> None:
self.frequency = frequency
self.counter = 0
def step(self, experiment, batch_index, x, label):
if self.counter == self.frequency:
self.counter = 0
img_index = torch.randint(0, len(x), (1,)).item()
img = x[img_index][0]
img = (img - img.min()) / (img.max() - img.min())
experiment.add_image(
f"batch: {batch_index}, element: {img_index}", img, 0, dataformats="HW"
)
self.counter += 1
def load_loggers(logger_config: dict) -> list[ExperimentLogger]:
loggers = []
for logger_path, kwargs in logger_config.items():
module_name, class_name = logger_path.rsplit(".", 1)
module = importlib.import_module(module_name)
Logger = getattr(module, class_name)
loggers.append(Logger(**kwargs))
return loggers