Spaces:
Runtime error
Runtime error
import pytorch_lightning as pl | |
from pytorch_lightning import callbacks as cb | |
import torch | |
from torch import nn | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import torchaudio | |
import yaml | |
from models.training_environment import TrainingEnvironment | |
from preprocessing.dataset import DanceDataModule, get_datasets | |
from preprocessing.pipelines import ( | |
SpectrogramTrainingPipeline, | |
WaveformPreprocessing, | |
) | |
# Architecture based on: https://github.com/minzwon/sota-music-tagging-models/blob/36aa13b7205ff156cf4dcab60fd69957da453151/training/model.py | |
class ResidualDancer(nn.Module): | |
def __init__(self, n_channels=128, n_classes=50): | |
super().__init__() | |
self.n_channels = n_channels | |
self.n_classes = n_classes | |
# Spectrogram | |
self.spec_bn = nn.BatchNorm2d(1) | |
# CNN | |
self.res_layers = nn.Sequential( | |
ResBlock(1, n_channels, stride=2), | |
ResBlock(n_channels, n_channels, stride=2), | |
ResBlock(n_channels, n_channels * 2, stride=2), | |
ResBlock(n_channels * 2, n_channels * 2, stride=2), | |
ResBlock(n_channels * 2, n_channels * 2, stride=2), | |
ResBlock(n_channels * 2, n_channels * 2, stride=2), | |
ResBlock(n_channels * 2, n_channels * 4, stride=2), | |
) | |
# Dense | |
self.dense1 = nn.Linear(n_channels * 4, n_channels * 4) | |
self.bn = nn.BatchNorm1d(n_channels * 4) | |
self.dense2 = nn.Linear(n_channels * 4, n_classes) | |
self.dropout = nn.Dropout(0.2) | |
def forward(self, x): | |
x = self.spec_bn(x) | |
# CNN | |
x = self.res_layers(x) | |
x = x.squeeze(2) | |
# Global Max Pooling | |
if x.size(-1) != 1: | |
x = nn.MaxPool1d(x.size(-1))(x) | |
x = x.squeeze(2) | |
# Dense | |
x = self.dense1(x) | |
x = self.bn(x) | |
x = F.relu(x) | |
x = self.dropout(x) | |
x = self.dense2(x) | |
# x = nn.Sigmoid()(x) | |
return x | |
class ResBlock(nn.Module): | |
def __init__(self, input_channels, output_channels, shape=3, stride=2): | |
super().__init__() | |
# convolution | |
self.conv_1 = nn.Conv2d( | |
input_channels, output_channels, shape, stride=stride, padding=shape // 2 | |
) | |
self.bn_1 = nn.BatchNorm2d(output_channels) | |
self.conv_2 = nn.Conv2d( | |
output_channels, output_channels, shape, padding=shape // 2 | |
) | |
self.bn_2 = nn.BatchNorm2d(output_channels) | |
# residual | |
self.diff = False | |
if (stride != 1) or (input_channels != output_channels): | |
self.conv_3 = nn.Conv2d( | |
input_channels, | |
output_channels, | |
shape, | |
stride=stride, | |
padding=shape // 2, | |
) | |
self.bn_3 = nn.BatchNorm2d(output_channels) | |
self.diff = True | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
# convolution | |
out = self.bn_2(self.conv_2(self.relu(self.bn_1(self.conv_1(x))))) | |
# residual | |
if self.diff: | |
x = self.bn_3(self.conv_3(x)) | |
out = x + out | |
out = self.relu(out) | |
return out | |
class DancePredictor: | |
def __init__( | |
self, | |
weight_path: str, | |
labels: list[str], | |
expected_duration=6, | |
threshold=0.5, | |
resample_frequency=16000, | |
device="cpu", | |
): | |
super().__init__() | |
self.expected_duration = expected_duration | |
self.threshold = threshold | |
self.resample_frequency = resample_frequency | |
self.preprocess_waveform = WaveformPreprocessing( | |
resample_frequency * expected_duration | |
) | |
self.audio_to_spectrogram = lambda x: x # TODO: Fix | |
self.labels = np.array(labels) | |
self.device = device | |
self.model = self.get_model(weight_path) | |
def get_model(self, weight_path: str) -> nn.Module: | |
weights = torch.load(weight_path, map_location=self.device)["state_dict"] | |
model = ResidualDancer(n_classes=len(self.labels)) | |
for key in list(weights): | |
weights[key.replace("model.", "")] = weights.pop(key) | |
model.load_state_dict(weights) | |
return model.to(self.device).eval() | |
def from_config(cls, config_path: str) -> "DancePredictor": | |
with open(config_path, "r") as f: | |
config = yaml.safe_load(f) | |
return DancePredictor(**config) | |
def __call__(self, waveform: np.ndarray, sample_rate: int) -> dict[str, float]: | |
if len(waveform.shape) > 1 and waveform.shape[1] < waveform.shape[0]: | |
waveform = waveform.transpose(1, 0) | |
elif len(waveform.shape) == 1: | |
waveform = np.expand_dims(waveform, 0) | |
waveform = torch.from_numpy(waveform.astype("int16")) | |
waveform = torchaudio.functional.apply_codec( | |
waveform, sample_rate, "wav", channels_first=True | |
) | |
waveform = torchaudio.functional.resample( | |
waveform, sample_rate, self.resample_frequency | |
) | |
waveform = self.preprocess_waveform(waveform) | |
spectrogram = self.audio_to_spectrogram(waveform) | |
spectrogram = spectrogram.unsqueeze(0).to(self.device) | |
results = self.model(spectrogram) | |
results = results.squeeze(0).detach().cpu().numpy() | |
result_mask = results > self.threshold | |
probs = results[result_mask] | |
dances = self.labels[result_mask] | |
return {dance: float(prob) for dance, prob in zip(dances, probs)} | |
def train_residual_dancer(config: dict): | |
TARGET_CLASSES = config["dance_ids"] | |
DEVICE = config["device"] | |
SEED = config["seed"] | |
pl.seed_everything(SEED, workers=True) | |
feature_extractor = SpectrogramTrainingPipeline(**config["feature_extractor"]) | |
dataset = get_datasets(config["datasets"], feature_extractor) | |
data = DanceDataModule(dataset, **config["data_module"]) | |
model = ResidualDancer(n_classes=len(TARGET_CLASSES), **config["model"]) | |
label_weights = data.get_label_weights().to(DEVICE) | |
criterion = nn.CrossEntropyLoss(label_weights) | |
train_env = TrainingEnvironment(model, criterion, config) | |
callbacks = [ | |
# cb.LearningRateFinder(update_attr=True), | |
cb.EarlyStopping("val/loss", patience=5), | |
cb.StochasticWeightAveraging(1e-2), | |
cb.RichProgressBar(), | |
cb.DeviceStatsMonitor(), | |
] | |
trainer = pl.Trainer(callbacks=callbacks, **config["trainer"]) | |
trainer.fit(train_env, datamodule=data) | |
trainer.test(train_env, datamodule=data) | |