waidhoferj's picture
fixed weighing strategy
a8c0792
raw
history blame
15.3 kB
import importlib
import json
import os
from typing import Any
import torch
from torch.utils.data import Dataset, DataLoader, random_split, ConcatDataset, Subset
import numpy as np
import pandas as pd
import torchaudio as ta
import pytorch_lightning as pl
from glob import iglob
from preprocessing.preprocess import (
fix_dance_rating_counts,
get_unique_labels,
has_valid_audio,
url_to_filename,
vectorize_label_probs,
vectorize_multi_label,
)
class SongDataset(Dataset):
def __init__(
self,
audio_paths: list[str],
dance_labels: list[np.ndarray],
audio_start_offset=6, # seconds
audio_window_duration=6, # seconds
audio_window_jitter=1.0, # seconds
audio_durations=None,
target_sample_rate=16000,
):
assert (
audio_window_duration > audio_window_jitter
), "Jitter should be a small fraction of the audio window duration."
self.audio_paths = audio_paths
self.dance_labels = dance_labels
# Added to limit file I/O
if audio_durations is None:
audio_metadata = [ta.info(audio) for audio in audio_paths]
self.audio_durations = [
meta.num_frames / meta.sample_rate for meta in audio_metadata
]
self.sample_rate = audio_metadata[
0
].sample_rate # assuming same sample rate
else:
self.audio_durations = audio_durations
self.sample_rate = ta.info(
audio_paths[0]
).sample_rate # assuming same sample rate
self.audio_window_duration = int(audio_window_duration)
self.audio_start_offset = audio_start_offset
self.audio_window_jitter = audio_window_jitter
self.target_sample_rate = target_sample_rate
def __len__(self):
return int(
sum(
max(duration - self.audio_start_offset, 0) // self.audio_window_duration
for duration in self.audio_durations
)
)
def __getitem__(self, idx: int) -> tuple[torch.Tensor, torch.Tensor]:
if isinstance(idx, list):
return [
(self._waveform_from_index(i), self._label_from_index(i)) for i in idx
]
waveform = self._waveform_from_index(idx)
dance_labels = self._label_from_index(idx)
if self._validate_output(waveform, dance_labels):
return waveform, dance_labels
else:
# WARNING: Could cause train/test split leak
return self[idx - 1]
def _idx2audio_idx(self, idx: int) -> int:
return self._get_audio_loc_from_idx(idx)[0]
def _get_audio_loc_from_idx(self, idx: int) -> tuple[int, int]:
"""
Converts dataset index to the indices that reference the target audio path
and window offset.
"""
total_slices = 0
for audio_index, duration in enumerate(self.audio_durations):
audio_slices = max(
(duration - self.audio_start_offset) // self.audio_window_duration, 1
)
if total_slices + audio_slices > idx:
frame_index = idx - total_slices
return audio_index, frame_index
total_slices += audio_slices
def get_label_weights(self):
n_examples = len(self)
n_classes = self.dance_labels.shape[1]
dance_label_counts = self.get_dance_label_counts()
weights = n_examples / (n_classes * dance_label_counts)
weights[np.isinf(weights) | np.isnan(weights)] = 1.0
return torch.from_numpy(weights).type(torch.float32)
def get_dance_label_counts(self) -> np.ndarray:
"""
Returns the number of examples for each dance label.
"""
examples_per_audio = np.expand_dims(
np.array(self.audio_durations) // self.audio_window_duration, axis=-1
)
return sum(self.dance_labels * examples_per_audio)
def _backtrace_audio_path(self, index: int) -> str:
return self.audio_paths[self._idx2audio_idx(index)]
def _validate_output(self, x, y):
is_finite = not torch.any(torch.isinf(x))
is_numerical = not torch.any(torch.isnan(x))
has_data = torch.any(x != 0.0)
is_probability = torch.all(y >= -0.0001) and torch.all(y <= 1.0001)
return all((is_finite, is_numerical, has_data, is_probability))
def _waveform_from_index(self, idx: int) -> torch.Tensor:
audio_index, frame_index = self._get_audio_loc_from_idx(idx)
audio_filepath = self.audio_paths[audio_index]
num_windows = self.audio_durations[audio_index] // self.audio_window_duration
jitter_start = -self.audio_window_jitter if frame_index > 0 else 0.0
jitter_end = self.audio_window_jitter if frame_index != num_windows - 1 else 0.0
jitter = int(
torch.FloatTensor(1).uniform_(jitter_start, jitter_end) * self.sample_rate
)
frame_offset = int(
frame_index * self.audio_window_duration * self.sample_rate
+ jitter
+ self.audio_start_offset * self.sample_rate
)
num_frames = self.sample_rate * self.audio_window_duration
waveform, sample_rate = ta.load(
audio_filepath, frame_offset=frame_offset, num_frames=num_frames
)
waveform = ta.functional.resample(
waveform, orig_freq=sample_rate, new_freq=self.target_sample_rate
)
return waveform
def _label_from_index(self, idx: int) -> torch.Tensor:
return torch.from_numpy(self.dance_labels[self._idx2audio_idx(idx)])
class HuggingFaceDatasetWrapper(Dataset):
"""
Makes a standard PyTorch Dataset compatible with a HuggingFace Trainer.
"""
def __init__(self, dataset, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dataset = dataset
self.pipeline = []
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
x, y = self.dataset[idx]
if len(self.pipeline) > 0:
for fn in self.pipeline:
x = fn(x)
dance_labels = y.argmax()
return {
"input_values": x["input_values"][0] if hasattr(x, "input_values") else x,
"label": dance_labels,
}
def __len__(self):
return len(self.dataset)
def append_to_pipeline(self, fn):
"""
Adds a preprocessing step to the dataset.
"""
self.pipeline.append(fn)
class BestBallroomDataset(Dataset):
def __init__(
self, audio_dir="data/ballroom-songs", class_list=None, **kwargs
) -> None:
super().__init__()
song_paths, encoded_labels, str_labels = self.get_examples(
audio_dir, class_list
)
self.labels = str_labels
with open(os.path.join(audio_dir, "audio_durations.json"), "r") as f:
durations = json.load(f)
durations = {
os.path.join(audio_dir, filepath): duration
for filepath, duration in durations.items()
}
audio_durations = [durations[song] for song in song_paths]
self.song_dataset = SongDataset(
song_paths, encoded_labels, audio_durations=audio_durations, **kwargs
)
def __getitem__(self, index) -> tuple[torch.Tensor, torch.Tensor]:
return self.song_dataset[index]
def __len__(self):
return len(self.song_dataset)
def get_examples(self, audio_dir, class_list=None):
dances = set(
f
for f in os.listdir(audio_dir)
if os.path.isdir(os.path.join(audio_dir, f))
)
common_dances = dances
if class_list is not None:
common_dances = dances & set(class_list)
dances = class_list
dances = np.array(sorted(dances))
song_paths = []
labels = []
for dance in common_dances:
dance_label = (dances == dance).astype("float32")
folder_path = os.path.join(audio_dir, dance)
folder_contents = [f for f in os.listdir(folder_path) if f.endswith(".wav")]
song_paths.extend(os.path.join(folder_path, f) for f in folder_contents)
labels.extend([dance_label] * len(folder_contents))
return np.array(song_paths), np.stack(labels), dances
class Music4DanceDataset(Dataset):
def __init__(
self,
song_data_path,
song_audio_path,
class_list=None,
multi_label=True,
min_votes=1,
class_count_limit=None,
**kwargs,
) -> None:
super().__init__()
df = pd.read_csv(song_data_path)
song_paths, labels = get_music4dance_examples(
df,
song_audio_path,
class_list=class_list,
multi_label=multi_label,
min_votes=min_votes,
class_count_limit=class_count_limit,
)
self.song_dataset = SongDataset(
song_paths,
labels,
audio_durations=[30.0] * len(song_paths),
**kwargs,
)
def __getitem__(self, index) -> tuple[torch.Tensor, torch.Tensor]:
return self.song_dataset[index]
def __len__(self):
return len(self.song_dataset)
def get_music4dance_examples(
df: pd.DataFrame,
audio_dir: str,
class_list=None,
multi_label=True,
min_votes=1,
class_count_limit=None,
) -> tuple[np.ndarray, np.ndarray]:
sampled_songs = df[has_valid_audio(df["Sample"], audio_dir)].copy(deep=True)
sampled_songs["DanceRating"] = fix_dance_rating_counts(sampled_songs["DanceRating"])
if class_list is not None:
class_list = set(class_list)
sampled_songs["DanceRating"] = sampled_songs["DanceRating"].apply(
lambda labels: {k: v for k, v in labels.items() if k in class_list}
if not pd.isna(labels)
and any(label in class_list and amt > 0 for label, amt in labels.items())
else np.nan
)
sampled_songs = sampled_songs.dropna(subset=["DanceRating"])
vote_mask = sampled_songs["DanceRating"].apply(
lambda dances: any(votes >= min_votes for votes in dances.values())
)
sampled_songs = sampled_songs[vote_mask]
labels = sampled_songs["DanceRating"].apply(
lambda dances: {
dance: votes for dance, votes in dances.items() if votes >= min_votes
}
)
unique_labels = np.array(get_unique_labels(labels))
vectorizer = vectorize_multi_label if multi_label else vectorize_label_probs
labels = labels.apply(lambda i: vectorizer(i, unique_labels))
audio_paths = [
os.path.join(audio_dir, url_to_filename(url)) for url in sampled_songs["Sample"]
]
return np.array(audio_paths), np.stack(labels)
class PipelinedDataset(Dataset):
"""
Adds a feature extractor preprocessing step to a dataset.
"""
def __init__(self, dataset, feature_extractor):
self._data = dataset
self.feature_extractor = feature_extractor
def __len__(self):
return len(self._data)
def __getitem__(self, index):
sample, label = self._data[index]
features = self.feature_extractor(sample)
return features, label
class DanceDataModule(pl.LightningDataModule):
def __init__(
self,
dataset: Dataset,
test_proportion=0.15,
val_proportion=0.1,
target_classes: list[str] = None,
batch_size: int = 64,
num_workers=10,
data_subset=None,
):
super().__init__()
self.val_proportion = val_proportion
self.test_proportion = test_proportion
self.train_proportion = 1.0 - test_proportion - val_proportion
self.target_classes = target_classes
self.batch_size = batch_size
self.num_workers = num_workers
if data_subset is not None and float(data_subset) != 1.0:
dataset, _ = random_split(dataset, [data_subset, 1 - data_subset])
self.dataset = dataset
def setup(self, stage: str):
self.train_ds, self.val_ds, self.test_ds = random_split(
self.dataset,
[self.train_proportion, self.val_proportion, self.test_proportion],
)
def train_dataloader(self):
return DataLoader(
self.train_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
def val_dataloader(self):
return DataLoader(
self.val_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
)
def test_dataloader(self):
return DataLoader(
self.test_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
)
def get_label_weights(self):
dataset = (
self.dataset.dataset if isinstance(self.dataset, Subset) else self.dataset
)
total_len = len(dataset)
ds_weights = [len(ds) / total_len for ds in dataset._data.datasets]
weights = sum(
ds.song_dataset.get_label_weights() * w
for ds, w in zip(dataset._data.datasets, ds_weights)
)
return weights
def find_mean_std(dataset: Dataset, zscore=1.96, moe=0.02, p=0.5):
"""
Estimates the mean and standard deviations of the a dataset.
"""
sample_size = int(np.ceil((zscore**2 * p * (1 - p)) / (moe**2)))
sample_indices = np.random.choice(
np.arange(len(dataset)), size=sample_size, replace=False
)
mean = 0
std = 0
for i in sample_indices:
features = dataset[i][0]
mean += features.mean().item()
std += features.std().item()
print("std", std / sample_size)
print("mean", mean / sample_size)
def get_datasets(dataset_config: dict, feature_extractor) -> Dataset:
datasets = []
for dataset_path, kwargs in dataset_config.items():
module_name, class_name = dataset_path.rsplit(".", 1)
module = importlib.import_module(module_name)
ProvidedDataset = getattr(module, class_name)
datasets.append(ProvidedDataset(**kwargs))
return PipelinedDataset(ConcatDataset(datasets), feature_extractor)
def get_class_counts(config: dict):
# TODO: Figure out why music4dance has fractional labels
dataset = get_datasets(config["datasets"], lambda x: x)
counts = sum(
np.sum(
np.arange(len(config["dance_ids"]))
== np.expand_dims(ds.song_dataset.dance_labels.argmax(1), 1),
axis=0,
)
for ds in dataset._data.datasets
)
labels = sorted(config["dance_ids"])
return dict(zip(labels, counts))
def record_audio_durations(folder: str):
"""
Records a filename: duration mapping of all audio files in a folder to a json file.
"""
durations = {}
music_files = iglob(os.path.join(folder, "**", "*.wav"), recursive=True)
for file in music_files:
meta = ta.info(file)
durations[os.path.relpath(file, folder)] = meta.num_frames / meta.sample_rate
with open(os.path.join(folder, "audio_durations.json"), "w") as f:
json.dump(durations, f)