waidhoferj's picture
fixed weighing strategy
a8c0792
import pandas as pd
import numpy as np
import re
import json
from pathlib import Path
import glob
import os
import shutil
import torchaudio
import torch
from tqdm import tqdm
from preprocessing.utils import url_to_filename
def has_valid_audio(audio_urls: pd.Series, audio_dir: str) -> pd.Series:
audio_urls = audio_urls.replace(".", np.nan)
audio_files = set(os.path.basename(f) for f in Path(audio_dir).iterdir())
valid_audio_mask = audio_urls.apply(
lambda url: url is not np.nan and url_to_filename(url) in audio_files
)
return valid_audio_mask
def validate_audio(audio_urls: pd.Series, audio_dir: str) -> pd.Series:
"""
Tests audio urls to ensure that their file exists and the contents is valid.
"""
audio_files = set(os.path.basename(f) for f in Path(audio_dir).iterdir())
def is_valid(url):
valid_url = type(url) == str and "http" in url
if not valid_url:
return False
filename = url_to_filename(url)
if filename not in audio_files:
return False
try:
w, _ = torchaudio.load(os.path.join(audio_dir, filename))
except:
return False
contents_invalid = (
torch.any(torch.isnan(w))
or torch.any(torch.isinf(w))
or len(torch.unique(w)) <= 2
)
return not contents_invalid
idxs = []
validations = []
for index, url in tqdm(
audio_urls.items(), total=len(audio_urls), desc="Audio URLs Validated"
):
idxs.append(index)
validations.append(is_valid(url))
return pd.Series(validations, index=idxs)
def fix_dance_rating_counts(dance_ratings: pd.Series) -> pd.Series:
tag_pattern = re.compile("([A-Za-z]+)(\+|-)(\d+)")
dance_ratings = dance_ratings.apply(lambda v: json.loads(v.replace("'", '"')))
def fix_labels(labels: dict) -> dict | float:
new_labels = {}
for k, v in labels.items():
match = tag_pattern.search(k)
if match is None:
new_labels[k] = new_labels.get(k, 0) + v
else:
k = match[1]
sign = 1 if match[2] == "+" else -1
scale = int(match[3])
new_labels[k] = new_labels.get(k, 0) + v * scale * sign
valid = any(v > 0 for v in new_labels.values())
return new_labels if valid else np.nan
return dance_ratings.apply(fix_labels)
def get_unique_labels(dance_labels: pd.Series) -> list:
labels = set()
for dances in dance_labels:
labels |= set(dances)
return sorted(labels)
def vectorize_label_probs(
labels: dict[str, int], unique_labels: np.ndarray
) -> np.ndarray:
"""
Turns label dict into probability distribution vector based on each label count.
"""
label_vec = np.zeros((len(unique_labels),), dtype="float32")
for k, v in labels.items():
item_vec = (unique_labels == k) * v
label_vec += item_vec
label_vec[label_vec < 0] = 0
label_vec /= label_vec.sum()
assert not any(np.isnan(label_vec)), f"Provided labels are invalid: {labels}"
return label_vec
def vectorize_multi_label(
labels: dict[str, int], unique_labels: np.ndarray
) -> np.ndarray:
"""
Turns label dict into binary label vectors for multi-label classification.
"""
probs = vectorize_label_probs(labels, unique_labels)
probs[probs > 0.0] = 1.0
return probs
def sort_yt_files(
aliases_path="data/dance_aliases.json",
all_dances_folder="data/best-ballroom-music",
original_location="data/yt-ballroom-music/",
):
def normalize_string(s):
# Lowercase string and remove special characters
return re.sub(r"\W+", "", s.lower())
with open(aliases_path, "r") as f:
dances = json.load(f)
# Normalize the dance inputs and aliases
normalized_dances = {
normalize_string(dance_id): [normalize_string(alias) for alias in aliases]
for dance_id, aliases in dances.items()
}
# For every wav file in the target folder
bad_files = []
progress_bar = tqdm(os.listdir(all_dances_folder), unit="files moved")
for file_name in progress_bar:
if file_name.endswith(".wav"):
# check if the normalized wav file name contains the normalized dance alias
normalized_file_name = normalize_string(file_name)
matching_dance_ids = [
dance_id
for dance_id, aliases in normalized_dances.items()
if any(alias in normalized_file_name for alias in aliases)
]
if len(matching_dance_ids) == 0:
# See if the dance is in the path
original_filename = file_name.replace(".wav", "")
matches = glob.glob(
os.path.join(original_location, "**", original_filename),
recursive=True,
)
if len(matches) == 1:
normalized_file_name = normalize_string(matches[0])
matching_dance_ids = [
dance_id
for dance_id, aliases in normalized_dances.items()
if any(alias in normalized_file_name for alias in aliases)
]
if "swz" in matching_dance_ids and "vwz" in matching_dance_ids:
matching_dance_ids.remove("swz")
if len(matching_dance_ids) > 1 and "lhp" in matching_dance_ids:
matching_dance_ids.remove("lhp")
if len(matching_dance_ids) != 1:
bad_files.append(file_name)
progress_bar.set_description(f"bad files: {len(bad_files)}")
continue
dst = os.path.join("data", "ballroom-songs", matching_dance_ids[0].upper())
os.makedirs(dst, exist_ok=True)
filepath = os.path.join(all_dances_folder, file_name)
shutil.copy(filepath, os.path.join(dst, file_name))
with open("data/bad_files.json", "w") as f:
json.dump(bad_files, f)
if __name__ == "__main__":
sort_yt_files()