import importlib from models.utils import calculate_metrics, plot_to_image, get_dance_mapping import numpy as np from abc import ABC, abstractmethod import pytorch_lightning as pl import matplotlib.pyplot as plt import torch import torch.nn as nn from sklearn.metrics import ( roc_auc_score, confusion_matrix, ConfusionMatrixDisplay, ) class TrainingEnvironment(pl.LightningModule): def __init__( self, model: nn.Module, criterion: nn.Module, config: dict, learning_rate=1e-4, *args, **kwargs, ): super().__init__() self.model = model self.criterion = criterion self.learning_rate = config["training_environment"].get( "learning_rate", learning_rate ) self.experiment_loggers = load_loggers( config["training_environment"].get("loggers", {}) ) self.config = config self.has_multi_label_predictions = not ( type(criterion).__name__ == "CrossEntropyLoss" ) self.save_hyperparameters( { "model": type(model).__name__, "loss": type(criterion).__name__, "config": config, **kwargs, } ) def training_step( self, batch: tuple[torch.Tensor, torch.TensorType], batch_index: int ) -> torch.Tensor: features, labels = batch outputs = self.model(features) if self.has_multi_label_predictions: outputs = nn.functional.sigmoid(outputs) loss = self.criterion(outputs, labels) metrics = calculate_metrics( outputs, labels, prefix="train/", multi_label=self.has_multi_label_predictions, ) self.log_dict(metrics, prog_bar=True) experiment = self.logger.experiment for logger in self.experiment_loggers: logger.step(experiment, batch_index, features, labels) return loss def validation_step( self, batch: tuple[torch.Tensor, torch.TensorType], batch_index: int ): x, y = batch preds = self.model(x) if self.has_multi_label_predictions: preds = nn.functional.sigmoid(preds) metrics = calculate_metrics( preds, y, prefix="val/", multi_label=self.has_multi_label_predictions ) metrics["val/loss"] = self.criterion(preds, y) self.log_dict(metrics, prog_bar=True, sync_dist=True) def test_step(self, batch: tuple[torch.Tensor, torch.TensorType], batch_index: int): x, y = batch preds = self.model(x) if self.has_multi_label_predictions: preds = nn.functional.sigmoid(preds) metrics = calculate_metrics( preds, y, prefix="test/", multi_label=self.has_multi_label_predictions ) if not self.has_multi_label_predictions: preds = nn.functional.softmax(preds, dim=1) y = y.detach().cpu().numpy() preds = preds.detach().cpu().numpy() # ROC-auc score try: metrics["test/roc_auc_score"] = torch.tensor( roc_auc_score(y, preds), dtype=torch.float32 ) except ValueError: # If there is only one class, roc_auc_score will throw an error pass pass self.log_dict(metrics, prog_bar=True) # Create confusion matrix preds = preds.argmax(axis=1) y = y.argmax(axis=1) cm = confusion_matrix( preds, y, normalize="all", labels=np.arange(len(self.config["dance_ids"])) ) if hasattr(self, "test_cm"): self.test_cm += cm else: self.test_cm = cm def on_test_end(self): dance_ids = sorted(self.config["dance_ids"]) np.fill_diagonal(self.test_cm, 0) cm = self.test_cm / self.test_cm.max() ConfusionMatrixDisplay(cm, display_labels=dance_ids).plot() image = plot_to_image(plt.gcf()) image = torch.tensor(image, dtype=torch.uint8) image = image.permute(2, 0, 1) self.logger.experiment.add_image("test/confusion_matrix", image, 0) delattr(self, "test_cm") def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, "min") return { "optimizer": optimizer, "lr_scheduler": scheduler, "monitor": "val/loss", } class ExperimentLogger(ABC): @abstractmethod def step(self, experiment, data): pass class SpectrogramLogger(ExperimentLogger): def __init__(self, frequency=100) -> None: self.frequency = frequency self.counter = 0 def step(self, experiment, batch_index, x, label): if self.counter == self.frequency: self.counter = 0 img_index = torch.randint(0, len(x), (1,)).item() img = x[img_index][0] img = (img - img.min()) / (img.max() - img.min()) experiment.add_image( f"batch: {batch_index}, element: {img_index}", img, 0, dataformats="HW" ) self.counter += 1 def load_loggers(logger_config: dict) -> list[ExperimentLogger]: loggers = [] for logger_path, kwargs in logger_config.items(): module_name, class_name = logger_path.rsplit(".", 1) module = importlib.import_module(module_name) Logger = getattr(module, class_name) loggers.append(Logger(**kwargs)) return loggers