from typing import Any import pandas as pd from sklearn.model_selection import train_test_split from transformers import ( AutoFeatureExtractor, AutoModelForAudioClassification, TrainingArguments, Trainer, ASTConfig, ASTFeatureExtractor, ASTForAudioClassification, ) import torch from torch import nn from models.training_environment import TrainingEnvironment from preprocessing.pipelines import WaveformTrainingPipeline from preprocessing.dataset import ( DanceDataModule, HuggingFaceDatasetWrapper, get_datasets, ) from preprocessing.dataset import get_music4dance_examples from .utils import get_id_label_mapping, compute_hf_metrics import pytorch_lightning as pl from pytorch_lightning import callbacks as cb MODEL_CHECKPOINT = "MIT/ast-finetuned-audioset-10-10-0.4593" class AST(nn.Module): def __init__(self, labels, *args, **kwargs) -> None: super().__init__(*args, **kwargs) id2label, label2id = get_id_label_mapping(labels) config = ASTConfig( hidden_size=300, num_attention_heads=5, num_hidden_layers=3, id2label=id2label, label2id=label2id, num_labels=len(label2id), ignore_mismatched_sizes=True, ) self.model = ASTForAudioClassification(config) def forward(self, x): return self.model(x).logits class ASTExtractorWrapper: def __init__(self, sampling_rate=16000, return_tensors="pt") -> None: self.extractor = ASTFeatureExtractor() self.sampling_rate = sampling_rate self.return_tensors = return_tensors self.waveform_pipeline = WaveformTrainingPipeline() # TODO configure from yaml def __call__(self, x) -> Any: x = self.waveform_pipeline(x) device = x.device x = x.squeeze(0).numpy() x = self.extractor( x, return_tensors=self.return_tensors, sampling_rate=self.sampling_rate ) return x["input_values"].squeeze(0).to(device) def train_lightning_ast(config: dict): """ work on integration between waveform dataset and environment. Should work for both HF and PTL. """ TARGET_CLASSES = config["dance_ids"] DEVICE = config["device"] SEED = config["seed"] pl.seed_everything(SEED, workers=True) feature_extractor = ASTExtractorWrapper() dataset = get_datasets(config["datasets"], feature_extractor) data = DanceDataModule( dataset, target_classes=TARGET_CLASSES, **config["data_module"], ) model = AST(TARGET_CLASSES).to(DEVICE) label_weights = data.get_label_weights().to(DEVICE) criterion = nn.CrossEntropyLoss( label_weights ) # LabelWeightedBCELoss(label_weights) train_env = TrainingEnvironment(model, criterion, config) callbacks = [ # cb.LearningRateFinder(update_attr=True), cb.EarlyStopping("val/loss", patience=5), cb.RichProgressBar(), ] trainer = pl.Trainer(callbacks=callbacks, **config["trainer"]) trainer.fit(train_env, datamodule=data) trainer.test(train_env, datamodule=data) def train_huggingface_ast(config: dict): TARGET_CLASSES = config["dance_ids"] DEVICE = config["device"] SEED = config["seed"] OUTPUT_DIR = "models/weights/ast" batch_size = config["data_module"]["batch_size"] epochs = config["data_module"]["min_epochs"] test_proportion = config["data_module"].get("test_proportion", 0.2) pl.seed_everything(SEED, workers=True) dataset = get_datasets(config["datasets"]) hf_dataset = HuggingFaceDatasetWrapper(dataset) id2label, label2id = get_id_label_mapping(TARGET_CLASSES) model_checkpoint = "MIT/ast-finetuned-audioset-10-10-0.4593" feature_extractor = AutoFeatureExtractor.from_pretrained(model_checkpoint) preprocess_waveform = lambda wf: feature_extractor( wf, sampling_rate=train_ds.resample_frequency, # padding="max_length", # return_tensors="pt", ) hf_dataset.append_to_pipeline(preprocess_waveform) test_proportion = config["data_module"]["test_proportion"] train_proporition = 1 - test_proportion train_ds, test_ds = torch.utils.data.random_split( hf_dataset, [train_proporition, test_proportion] ) model = AutoModelForAudioClassification.from_pretrained( model_checkpoint, num_labels=len(TARGET_CLASSES), label2id=label2id, id2label=id2label, ignore_mismatched_sizes=True, ).to(DEVICE) training_args = TrainingArguments( output_dir=OUTPUT_DIR, evaluation_strategy="epoch", save_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=batch_size, gradient_accumulation_steps=5, per_device_eval_batch_size=batch_size, num_train_epochs=epochs, warmup_ratio=0.1, logging_steps=10, load_best_model_at_end=True, metric_for_best_model="accuracy", push_to_hub=False, use_mps_device=DEVICE == "mps", ) trainer = Trainer( model=model, args=training_args, train_dataset=train_ds, eval_dataset=test_ds, tokenizer=feature_extractor, compute_metrics=compute_hf_metrics, ) trainer.train() return model