training_fn: residual.train_residual_dancer device: mps seed: 42 dance_ids: &dance_ids - BCH - BOL # - CHA - ECS - HST - LHP - NC2 - JIV - QST - RMB - SFT - SLS - SMB - SWZ - TGO - VWZ - WCS data_module: batch_size: 128 num_workers: 10 test_proportion: 0.15 datasets: preprocessing.dataset.BestBallroomDataset: audio_dir: data/ballroom-songs class_list: *dance_ids audio_window_jitter: 0.7 preprocessing.dataset.Music4DanceDataset: song_data_path: data/songs_cleaned.csv song_audio_path: data/samples class_list: *dance_ids multi_label: True min_votes: 1 audio_window_jitter: 0.7 model: n_channels: 128 feature_extractor: mask_count: 0 # Don't mask the data snr_mean: 15.0 # Pretty much eliminate the noise freq_mask_size: 10 time_mask_size: 80 trainer: log_every_n_steps: 15 accelerator: gpu max_epochs: 50 min_epochs: 2 fast_dev_run: False # gradient_clip_val: 0.5 # overfit_batches: 1 training_environment: learning_rate: 0.00053